

International Conference on Information Engineering, Management and Security 2015 [ICIEMS 2015]

ISBN	978-81-929742-7-9	VOL	01
Website	www.iciems.in	eMail	iciems@asdf.res.in
Received	10 - July - 2015	Accepted	31- July - 2015
Article ID	ICIEMS049	eAID	ICIEMS.2015.049

RAGA ANALYSIS AND CLASSIFICATION OF INSTRUMENTAL MUSIC

Prabha Kumari¹, Prof.(Dr.) Y.H.Dandawate², Angha Bidkar³ ^{1,2,3} Vishwakarma Institute of Information Technology, Pune, S.NO.34, Kondhwa, Budruk

Abstract: Raga played by Indian instrument is the actually soul of the Indian classical music. Indian classical music is famous around all over the world for its particular structure and well soundness. Our work is related to analyze and classify the instrumental music according to their features. This will help to non-professional and music learner for understanding and acquire knowledge about the music using the system intelligence. There are various features for analysis of music but our approach is towards the spectral and temporal features. For extraction of feature we prefer MIR toolbox and MATLAB function, it is really a very helpful tool for these purpose. At very first we just collect clips of ragas and find out the spectral and temporal features. These features show the better result. We are using four ragas namely:- Bhairav, Bhairavi, Todi and Yaman. For classification we use different types of classifier just like KNN classifier and SVM classifier they gives approximate 87% and 92% accuracy respectively..

I. INTRODUCTION

Indian classical music is known for its perfect technical soundness and well defined structure known as ragas. Each raga is based on some specific combination of swara(notes). Any raga should have at least five notes out of seven and it is also possible that two raga has same notes but the aarohan, avrohan and pakad is different so one can identify it properly. Expert person can understand the raga very easily, but for learner it is very difficult to classify and identify the raga. So this method is helpful for both professional and non-professional one. Proposed work is related to classification and analysis of Instrumental Indian classical music. We are using MATLAB tool for processing music segment and find out information related to raga analysis and classification. Music Information **R**etrieval toolbox (MIR)[2] is also helpful to find out the features for comparison. This software widely use in western music and now days implemented in Indian Classical music. Work focused on four ragas namely Bhairav, Bhairavi, Todi and Yaman and the selected instrumental music is mixed polyphonic to find out the spectral and temporal features like brightness, RMS energy, spectral flux spectrum chromogram, histogram etc. For classification we preferred KNN and SVM classifier [2], [3]. Swaras are the frequency generated by instrumentally or vocally. Actually these seven swaras represents the absolute frequencies ratio with respect to each other and these are very similar to SOLFEGE in western music The seven swaras are namely: Shadja (Sa), Rishabh (Re), Gandhara (Ga), Madhyama (Ma), Panchama (Pa), Dhaivata(Dh), and Nishad (Ni).Out of seven, two swaras i.e Sa and Pa has only pure form while other five has both pure and impure form in structural elements of raga. The purpose behind this work is to design a computer based education of Indian classical music for everyone.

This paper is prepared exclusively for International Conference on Information Engineering, Management and Security 2015 [ICIEMS] which is published by ASDF International, Registered in London, United Kingdom. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honoured. For all other uses, contact the owner/author(s). Copyright Holder can be reached at copy@asdf.international for distribution.

2015 © Reserved by ASDF.international

Following are the basic terms related to Indian classical music. *a) Raga*:

Indian music is famous for its ragas specialty. Raga represents the color of emotion and it has some specific melodic phrases. Raga has definite pattern of notes (swaras). Two ragas may be same notes but the pattern of distribution is different in case of each raga that is why two ragas have same notes but they tuned differently.

b) Aarohan ,Avrohan and Pakad

Aarohan and Avrohan is the ascending and descending progression of swaras respectively. Pakad is a small sequence of swaras in a raga that acts as a mark for the raga and an artist often calls and recalls the pakad over a performance. *c) Vadi , Samvadi and Jati*

The Vadi is the most noticeable notes used in a raga and next to vadi, samvadi is the second most noticeable notes in a raga. Often Vadi as the Monarch of swaras for that raga. There are three jati in Indian classical music namely: Audhav-has five notes, Shadav-has six notes and Sampoorna has seven notes. Ragas have combination of Jati, e.g. Audhav- Audhav, Audhav – Shadav

The rest of the paper isorganized as follows: The literature survey is described in section II. Methodology explained in section III. The proposed approach details in section IV. Section V describes the details regarding hardware and its related issues. The experimentation and results are projected in section VI and section VII concludes the paper

II .LITERATURE SURVEY

For literature we have been following the related papers for, how we can extract these features the method of analysis and classification of ragas, to distinguish the different characteristics of raga and their structure and methodology. Pranay Dighe *et.al* [1] has proposed work to vigorous programmed analysis of Indian classical music through machine learning and signal processing toolbox like MIR toolbox. They developed idea to perform scale-independent raga identification by using a random forest classifier on swara histograms and succeeded state-of-the-art results for the same. The average accuracy is approximate 97% and some algorithm is also used by them especially for computation of swara based features. By referring this paper we acknowledged about the features extraction of ragas and using these features for the classification of two ragas. Although this paper has done good work in classification of ragas but no means for temporal properties of raga have been provided by the authorss. The same has been included in proposed work. Gopala Krishna Kaluti and Rajeshwari Shreedhar *et.al*[2][3] has proposed and music recognition and classification their work related to implement computational model for raga recognition. In this work they examined the raga and identifying these ragas naturally. They mainly focus on the pitch of the notes and through which it is recognizable of notes .The maximum accuracy is approximate 94%. Through this paper we acquire knowledge about we can implement this technique for both western music and Indian classical music. Although this paper has done excellent work in raga identification and classification but no any description about the analysis of features of ragas have been done by the authors.

The same work has been included in proposed work. Sourabh Deshmukh et. al. [3] has proposed ethno musico logical identification of singer and ragas. He has used features for analysis and all those features are analysed in time or frequency domain and for classification he has used various types of classifier and maximum accuracy is 93%. V. Sivaranjani [4] has proposed work for mainly pitch analysis and retrieves information of music which is related to pitch. Soubhik Chakraborty et.al. [5] has proposed work related to scientifically verify a raga on the basis of vadi and samvadi. They have done statistical analysis of ragas and not using properties like temporal or spectral which are used by proposed work. Prasad Reddy et.al [6] suggested Automatic Raaga Identification System for Carnatic Music mainly for melkartha raga identification. They have used Hidden Markov Model and also introduce special algorithm for pakad matching for this purpose Michael K.[7] has recommended exploration for North Indian classical music, his process is related to analysis of the raga in north Indian classification the north Indian classical music. He used ethno musicological method for raga analysis and positing it. Kris West [9] worked on the analysis of audio music using multiple processes for classification and implemented so called search -by - example method. He used novel machine learning algorithm (MVCART) that is totally based on the classic Decision Tree algorithm. Preeti Rao et.al [10] proposed identification of melodic motifs in raga. They used machine learning method for phrase classification on data that is manually segmented. They used HMM and Dynamic time warping method for classification. Rajshri Pendekaret.al [11] worked on raga and swara identification using harmonium, they used onset detection for determination of spectral flux for frequency estimation. The programing used here is dynamic in nature this technique is mainly used for template matching.

Although all the papers which we referred here for literature survey is related to music but there are very few work has been done in Indian instrumental music.

I. METODOLOGY

A. DATA BASE

The steps followed in proposed methodology are shown in fig.1.

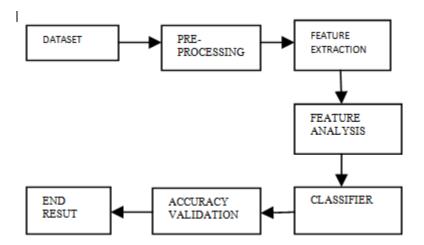


Figure 1: Block diagram of methodology

We collected the data base from live concerts recording, original CDs, IIT Kanpur, and download from internet. We have selected four ragas for our work; details about each raga is depicted below:

a) RAGA BHAIRAV : Bhairav is a raga in Hindustani classical music. Bhairav is its name from Bhiarava, a name of Shiva. It is traditionally played before sunrise. Bhairav consider the most important Hindustani raga

🗆 Aaroh-Sa Re(k) Ga Ma Pa Dha(k) Ni Sa

🗌 Avroh-Sa Ni Dha(k) Pa Ma Ga Re(k) Sa

 \square Pakad – S G MP Dha(K) P

 \Box Vadi – Dha(k)

 \Box Samvadi – Re(k)

b) RAGA BHAIRAVI: Raga Bhairavi is sampoorna raga because it contains all seven notes. Bhairavi is the most ancient raga said to have been ubiquitous about 1500 years ago. Bhairavi is its name from Goddess Bhairavi(parvati). It is a morning raga.

□ Aaroh- Sa Re Ga Ma Pa Dha Ni Sa
 □ Avroh – Sa Ni Dha Pa Ma Ga Re Sa
 □ Vadi – Ma
 □ Samvadi – Sa

c) RAGA TODI: "Todi' is a Hindustani classical raga. Its name comes from the THAAT, one of the ten modes of Hindustani classical music. Todi is a late morning raga.

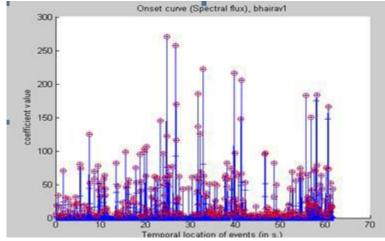
 $\Box \text{ Aaroh} - \text{Sa } \text{Re}(k) \text{ Ga}(k) \text{ Ma } \text{Dha}(k) \text{ Ni } \text{Sa}$ $\Box \text{ Avroh} - \text{Sa } \text{Ni } \text{Dha}(k) \text{ Ma } \text{Ga}(k) \text{ Re}(k) \text{ Sa}$ $\Box \text{ Vadi} - \text{Dha}(k)$ $\Box \text{ Samvadi} - \text{Ga}(k)$

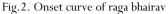
d) RAGA YAMAN: Raga Yaman is also known as Emaan. It is a sampoorna Hindustani classical music. Yaman is night raga, it originates from the Persian mode other says it is vedic origins as raga Yamuna which over the time altered as Yaman.

□ Aaroh – Sa Re Ga Ma(t) Pa Dha Ni Sa □ Avroh – Sa Ni Dha Pa Ma(t) Ga Re Sa □ Vadi - Ga □ Samvadi – Ni

B. PRE- PROCESSING

Preprocessing is the second step of methodology, in this step we take all the ragas and first converts these files into .WAV files. After conversion we cut each file into a specific duration i.e approximates 60sec so that we can get information about each and every note properly. For these purpose we use Virtual Dj Pro software. After pre –processing we fed the data into feature extraction.

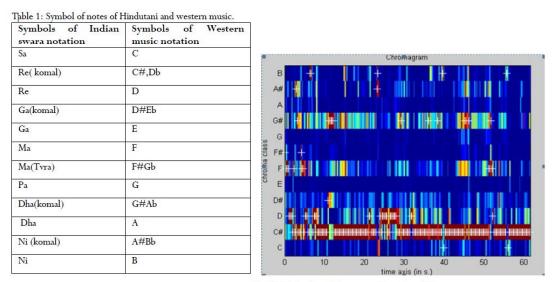

C. FEATURE EXTRACTION AND ANALYSIS


Here we mainly focused on temporal as well spectral properties of raga wave file. *a) ONSET*

For onset detection we use spectral flux method for ragas, in this method we calculated change in spectral energy from one frame to the next frame by using spectral flux. Actually spectral flux is the squared of normalized difference between consecutive spectral distribution.

$$\sum_{K=0}^{K=1} (|X_n(k)| - |X_{n-1}(k)|$$
⁽¹⁾

where n-1 and n are the frame indices and (k) is the FFT of nth frame. So through Onset detection we can easily find out the energy distribution of the specific notes.



Above figure shows the detail description of each formant and it provides easy access to the value of formant.

b) CHROMAGRAM

Chromagram denotes the distributions of energy along pitches. There are 12 semitones in western music which is equivalent to notes of Hindustani classical music. These semitones octaves are C, C#, D, D#, E, F, F#, G, G#, A, A# and B. these semitones are fixed with absolute frequency value and most interesting thing is that musical octave has a special property is that the current semitone is equivalent to one octave below or above to it so semitone has the property of repeatability it repeats in each octave above and below. By the table which is given below we can relate the semitones of western music with notes of Indian classical music. Although chromagram is find out through MIR toolbox but sometimes this is not provides exact notation of swara.

In the above figure represents distribution of raga Chromagram is useful for extraction of notes of ragas. By the help of above diagram we can identify the notes which is used in raga bhairav .

D. PITCH DETECTION

Pitch detection is processed for the finding the frequency of pitch. It plays important role because it is linked with periodicity of the audio wave signal and these periodic signal are made up of fundamental repeated frequencies, these fundamental repeated frequencies are multiples of a joint fundamental frequency. There are various approach for finding the pitch of the audio wave namely: spatial domain, time domain frequency domain. Here we apply MIR toolbox to find out the pitch of the signal.

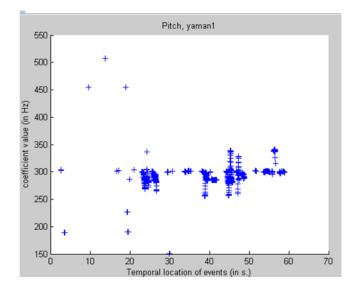


Fig.4. Pitch detection of raga Yaman

E.CLASSIFICATION

For classification of ragas we are using KNN and SVM respectively. We depicted each classification in detail given below.

a) K-NEAREST NEIGHBOR (KNN)

This method is used for pattern recognition and classification. Here some steps by which we apply this classifier for raga classification \Box Take feature vector of both test and train ragas.

 \Box Now compare the features of both test and trained ragas.

□ Find the Euclidean distance between test vector and trained vector of ragas

 \Box The test segment assigned only those who have most common category among k nearest.

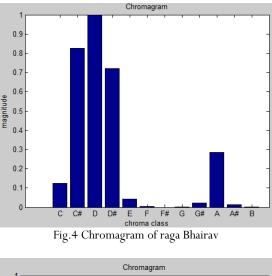
□ KNN-classification can be classified by following equation

$$C^{*=} \sum_{i} \delta wi (c, (f(x$$
 (2)

where c is the class level i.e raga identity and fi(x) is the class label for the ith neighbor of x and (c, fi(x)). \Box This method gives 87% accuracy.

b) SUPPORT VECTOR MACHINE(SVM)

- □ SVM is supervised learning method and it is used for classification.
- $\hfill\square$ This method is used for data analysis and classification.
- \Box In this method we categories data into two classes.
- \Box SVM classifies data by finding the best hyper plane that separates all data into two classes .


□ SVM gives approximate 93% accuraccy

IV.EXPERIMENTAL RESULT

We are using four ragas for our experiment and we find the final result of our work with accuracy 87.5% and 93% respectively. Here we used KNN and SVM classifier for classification approach. Through all the properties we have used here are give better result in classification also .Although we are using KNN and SVM classifier, graphically it seems easy to classify the Indian classical music.We

are taking some spectral properties of raga for analysis and we can find out the true and wrong raga. Let us see with comparison between observation and actual ragas. We get fundamental frequency of the different raga by using this methology which is also play an important role in classification of raga.

Comparision between actual and observe notes of raga bhairav and bhairavi using chromagram

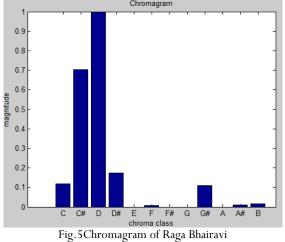


Table no. 1 comparision between observed and actual notes

NOTES	OBSERVED	ACTUAL
VADI	Dha(k)	Dha(komal)
SAMVADI	Re(k)	Re(komal)

Table no. 2Comparision between actual and observed notes

NOTES	OBSERVED	ACTUAL
VADI	Dha(k)	Ma
SAMVADI	Sa	Sa

Although chromagram is graphical representation of chroma ,we can also find out the energy distribution among the notes of the raga from above diagram we can discriminate the notes and the energy of the notes. This is also helpful to provide the difference between vadi and samvadi, which is shown in the above table for both raga Bhairav and Bhairavi.

HISTOGRAM OF RAGA:

Through histogram graph here we can find out the Vadi and Samvadi notes and by the help of graph and using the value of vadi andsamvadi it is while easy to detect the raga, we can also find out which type of raga has been played through this process

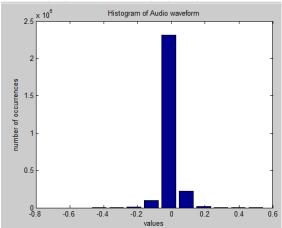


Fig.8 Histogram of raga Yaman the heighest bar shows the value of Vadi and nex to Vadi is Samvadi.

We know that the value of vadi is heighest among all notes. Now from above fig it is cleared that the value of vadi is approximate 2.25 which is nearly to raga yaman.

Table no.5 Rag	ga database and	accuracy after	classification
----------------	-----------------	----------------	----------------

Raga	Test sample	Accurately classify	accuracy
Bhairav	15	12	80%
Bhairavi	10	8	80%
Todi	15	10	67%
Yaman	16	12	75%
Total	56	42	75%

Classifier	Accuracy
SVM	92%
K-NN	87%

Table no.6 Accuracy of different classifier

IV. CONCLUSION AND FUTURE WORK

In the proposed work, an acoustic and signal processing based approach is used for analysis and classification of Indian instrumental music. We have tested our algorithm over the database of 60 wave files. Our work is concerned with the discrimination between four different raga using KNN and SVM classifier. Through this work we are emphasized the spectral and temporal properties of instrumental raga .The KNN classifier can significantly support in classification of different ragas with an average accuracy as high. Although this work has done for analysis and classification but we can also use this methodology for detection of raga also. This classification provide approximate 87.5% accuracy.

The main purpose behind this proposed work is designed to a model for music learner and music lover by the help of this method a person can easily classify the difference between two different ragas. This technique is also very helpful in music recommendation system. However it is also helpful in music synthesis and invention of new raga. Automatic tagging is also possible through this work. Future work also lies to improve the dataset uses as maximum as possible and short out all the imperfections which could not improve through this proposed work to increase the accuracy.

REFERENCES

[1] Dighe P., KarnikH., Raj B., "Swara Histogram Based Structural analysis and Identification of Indian Classical Ragas", *Mellon University, Pittsburgh PA, USA*

[2] Kaluti G., Gulati S., Rao P., "A Survey of Raaga Recognition Techniques and Improvements to the State-of-the-Art". Proc of sound and music computing 2011Podova Italy.

[3] Deshmukh S., Bhirud S., "Analysis and application of audio features extraction and classification method to be used for North Indian Classical Music's singer identification problem". *International Journal of Advanced Research in Computer and Communication Engineering Vol. 3, Issue 2, February 2014.*

[4] Sivaranjani V., "Pitch Analysis for Musical Instruments using Cepstrum", International Journal of Advanced Computer Technology (IJACT)

[5] Chakraborty S., Ranganayakulu R., Chauhan s., Saulanki S., Mahto k., "Given a raga recording, can we scientifically verify which school of Vadi-Samvadi selection is supported by the artist?", *International Journal of Computers & Technology Volume 4 No. 2, March-April, 2013.*

[6] Reddy P., Rao T., Sudha K., K.K., "Automatic Raaga Identification System for Carnatic Music Using Hidden Markov Model", *Global Journal of Computer Science and Technology Volume 11 Issue 22 Version 1.0 December 2011*

[7] Michaela K., "Spector, A. Z. an Exploration into North Indian Classical Music : Raga, AlifLaila",

[8] West k., "Novel technique for Audio Music Classification and Search"

[9] Rajeswari Sridhar and T.V. Geetha, "Swara identification of Carnatic music", IEEE Computer Society press, proceeding ICIT 2006.

[10] Rao P., Ros J., GanguliK., PanditV., Ishwar V., Bellur, A.Murthy H., "Classification Of Melodic In Motifs In Raag Music With Time Series Matching", *Appeared In Journal Of New Music Research, Volume 43issue 1,31 March 2014.*

[11] Pendhekar R., Mahajan S., Majumdar R., Ganoo P., "Harmonium Raga Recognition", International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013.