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Abstract: In this paper, we introduce and study new classes of functions called b -δ -open f u n c t i o n s  a nd  weakly b-δ -open functions by 

using the notions of b-δ-open sets and b-δ-closed sets.  Some of its basic properties of these functions are investigated. 
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1. INTRODUCTION 
 
 

The notions of δ -open sets, δ -closed set where introduced by Velicko [11] for the purpose of studying the important class of H-
closed spaces. 1996, Andrijević  [3] introduced a new class of generalized open sets called b-open sets in a topological space.  

This class is a subset of the class of β-open sets [1]. Also the class of b-open sets is a superset of the class of semi- open sets [5] 

and the class of preopen sets [6].  The purpose of this paper is to introduce and investigate the notions of weakly b-δ-open 

functions and weakly b-δ-closed functions.  We investigate some of the fundamental properties of this class of functions. We 

recall some basic definitions and known results.  Throughout the paper,  X  and Y   ( or (X, τ ) and (Y, σ) ) stand  for 
topological  spaces with no separation  axioms assumed  unless otherwise  stated.   Let A be a subset of X. The closure of A 
and the interior of A will be denoted by cl(A) and int(A), respectively.  

  
2. P R E L I M I N A R Y  

 

Definition  2.1.    A subset  A  of a  space  X  is said  to be  b-open [3]  if A  ⊆ cl(int(A))   int(cl(A)).The  complement 

of a b-open set is said to be b-closed. The intersection of all  b-closed sets  containing  A ⊆ X  is called the b-closure of A and 
shall be denoted  by bcl(A).   The union of all b-open sets of X contained in A is called the b-interior of A and is denoted by 
bint(A). A subset A is said to be b-regular if it is b-open and b-closed.  The family of all b-open (resp. b-closed, b-regular) 
subsets of a space X is denoted by BO(X ) (resp.  BC (X ), BR(X )) and the collection of all b-open subsets of X containing a 
fixed point x is denoted  by BO(X, x).   The sets BC (X, x)  and BR(X, x)  are defined analogously. 

Definition  2.2.    A point  x  ∈  X  is called  a  δ -cluster  [11] point of A if int(c l(U )) ∩ A   φ  for every  open set U of 
X containing x. 

The set of all δ -cluster points of A is called the δ - closure of A and is denoted by  δ -cl (A)). A subset A is said to be δ -

closed if δ -cl(A)  = A.  The complement of a δ -closed set is said to be δ-open.   The   δ -interior of A is defined by the 

union of all δ -open sets contained in A and is denoted by  δ-int (A)).   
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Definition  2.3.  A point  x  ∈  X  is called  a  b- δ  -cluster  [8 ] point of A if int(bc l(U )) ∩ A   φ  for every  b-open set 

U of X containing x.The  set of all  b-δ -cluster points of A is called the  b-δ - closure  of A and  is denoted  by  b-δ -cl (A)). 

A subset A is said to be b-δ -closed if b-δ-cl(A)  = A.  The complement of a b-δ -closed set is said to be b-δ-open.   The   b -

δ -interior of A is defined by the union of all b -δ -open sets contained in A and is denoted by b-δ-int (A)). The  family of all 

b- δ -open (resp. b- δ -closed) sets of a space X is denoted by BδO(X, τ ) (resp.  BδC(X, τ )). 
 

Definition  2.4. A  subset  A  of  a  space  X  is  said  to be  α-open  [7] (resp. semi-open [5],  preopen[6], β-open[1]  or 

semi-preopen  [2]) if A ⊆ int(cl(int(A)))  (resp. A ⊆ c l(int(A)), A  ⊆ int(cl(A)),A ⊆ cl ( int ( cl(A))). 
 

 Definition  2.5. [4] f : (X, τ ) → (Y, σ) is said to be strongly continuous if for    every subset A of (X, τ ), f (cl(A)) ⊆ f 
(A). 
 

Definition  2.6. [6] f : (X, τ ) → (Y, σ) is said to be p r e - c o n t i n u o u s  i f  f - 1 ( V )  i s  p r e - o p e n  i n  (X, τ ) for every open 

set V of (Y, σ). 
 

Definition  2.7. [1] f : (X, τ ) → (Y, σ) is said to be β-open if the image of each open set U of (X, τ ) is a β-open set. 
 
Lemma  2.5.   [3] For  a subset A of a space  X ,  the following properties  hold: 

(1)  b  i nt(A) = sint(A)   pint(A); 

(2)  bcl(A) = scl(A) pcl(A); 

(3)  bcl(X − A) = X - bint(A); 

(4)  x ∈ bcl(A)  if and only if A ∩ U = φ for every U ∈ BO(X, x); 

(5)  A ∈ BC (X ) if and only if A = bcl(A); 

(6) pint(bcl(A)) = bcl(pint(A)). 
 
Lemma 2.6.  [2] For a subset A of a space X , the following properties  are hold: 

(1)  αint(A) = A ∩ int(cl(int(A))); 

(2)  sint(A) = A ∩cl(int(A)); 

(3)  pint(A) = A ∩int(cl(A)). 
 

 

3. WEAKLY b-δ OPEN FUNCTIONS  
 

Definition 3 .1.  A function f : (X, τ ) → (Y, σ)  is said to be b-δ -open if for each open set U of (X, τ ) , f (U ) is b-δ -
open. 
 

Definition 3 .2.   A function f: (X, τ )  (Y, σ )  is said to be weakly b- δ -open if f(U)   b-δ-int(f(cl(U))) for each open 

set U of (X, τ ). 
 

Theorem  3.3.   For  a function  f: (X, τ )  (Y, σ ),  the following conditions  are equivalent: 

(1) f is weakly b-δ-open, 

(2) f (δ-int (A)) ⊆ b-δ-int (f (A)) for every subset o f  A  of   (X, τ ), 

(3) δ-int (f-1 (B)) ⊆ f-1 (b-δ-int (B)) for every subset o f  B of (Y, σ ), 

(4) f-1 (b-δ-cl(B) ⊆ δ-cl(f-1 (B)) for every subset of B of (Y, σ ). 
 

Proof. (1)⇒(2):  Let A be any subset of (X, τ ) and x ∈ δ-int (A).  Then there exists an open set U such that x ∈ U ⊆ c 

l(U ) ⊆ A. Then, f (x) ∈ f (U ) ⊆ f (c l(U )) ⊆ f (A).  Since f is weakly b-δ -open, f (U ) ⊆ b-δ-int (f (c l(U ))) ⊆ b-δ-int(f (A)).This  

implies  that f (x) ∈ b-δ-int (f (A)). This s h o w s  that x ∈ f-1 ( b-δ-int (f (A))).Thus δ-int (A) ⊆ f-1 (b-δ-int(f (A))) and so f (δ-int 
(A)) ⊆ b-δ-int(f (A)).  
 

(2)⇒(3):  Let B be any subset of (Y, σ ).Then  by (2), f (δ-int (f-1 (B))) ⊆ b-δ-int(f(f-1 (B)) ⊆ b-δ-int(B). Therefore δ-int(f-1 (B) ⊆  

f-1 (b-δ-int(B)). 
 

(3)⇒(4):  Let B be any subset of (Y, σ ).Using (3), we have X – δ-cl (f-1 (B)) = δ-int (X -  f-1 (B)) = δ-int(f-1 (Y  − B)) ⊆  f-1 

(b-δ-int (Y  − B)) = f-1 (Y −b-δ-cl (B)) = X − f-1 (b-δ-cl(B)).Therefore we obtain f-1(b-δ-cl(B)) ⊆ δ-cl(f-1 (B)). 
 

 (4)⇒(1):   Let  V   be any  open  set  of (X, τ ) and  B  = Y  −f (c l(V )). By (4),  
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f-1(b-δ-cl (Y − f (c l(V )))) ⊆ δ-cl(f-1(Y  − f (c l(V )))).Therefore,  we obtain f-1(Y  −b-δ-int (f (cl(V )))) ⊆ δ-cl (X − f-1(f (c l(V )))) ⊆ δ-

cl (X  −cl(V )).Hence  V ⊆ δ-int (c l(V )) ⊆  f-1 (b-δ-int (f (c l(V ))))  and  f (V ) ⊆ b-δ-int(f (c l(V ))).  This shows that f is weakly b-δ -
open. 
 

Theorem  3.4.   For  a function  f : (X, τ ) → (Y, σ), the following conditions  are equivalent: 

(1) f is weakly b-δ -open; 

(2)  For each x ∈ X and each open subset U of (X, τ ) containing x , there   

     exists a b- δ-open set V  containing  f (x)  such that  V  ⊆ f (cl(U )). 
 

Proof.  (1)⇒(2):   Let  x  ∈  X  and  U  be an  open  set  in (X, τ ) with  x  ∈  U . Since  f  is weakly  b-δ-open, f (x)  ∈  f (U ) ⊆  

b-δ-int(f(cl(U))). Let  V = b-δ-int (f (cl(U ))). Then  V  is b-δ-open and f (x) ∈ V  ⊆ f (c l(U )). 
 

  (2)⇒(1):   Let U be an open set in (X, τ ) and let y ∈ f (U ). It follows from (2) that V  ⊆ f (cl (U )) for some b-δ-open set V   in 

(Y, σ )  containing y.  Hence, we have y   V ⊆ b-δ-int(f(cl(U))).This shows that f(U) ⊆ b-δ-int(f(cl(U))).Thus f is weakly b-δ-

open. 
 

Theorem 3.5.  For a bijective function f: (X, τ )  (Y, σ ) , the following conditions are equivalent: 

(1)  f is weakly b-δ-open, 

(2) b-δ-cl(f(int(F))) ⊆ f(F) for each closed set F in (X, τ ), 

(3) b-δ-cl(f(U))) ⊆ f(cl(U)) for each open set U in (X, τ ). 

Proof. (1)⇒(2):  Let  F  be a closed set  in (X, τ ). Then since f is weakly b-δ-open, 

f (X − F )= ⊆ b-δ-int (f (cl(X − F )))= b-δ-int (f (cl(X − F ))) and so Y − f (F ) ⊆ Y −b-δ-cl (f (int(F ))). Hence b-δ-cl (f (int(F ))) ⊆ 
f (F ) . 

(2)⇒(3): Let U be an open set in (X, τ ). Since c l(U ) is a closed set and U ⊆ int(cl(U)), by (2), we have b-δ-cl(f(U)) ⊆ b-δ-

cl(f(int(cl(U)))) ⊆ f(cl(U)). 

(3)⇒(1): Let V be an open set of(X, τ ).. Then we have Y - b-δ-int(f(cl(V))) = b-δ-cl(Y – f(cl(V))) =    b-δ-cl(f(X – cl(V))) ⊆ f(cl(X – 

cl(V))) = f(X – int(cl(V))) ⊆f(X – V) = Y – f(V).Therefore, we have f(V) ⊆ b-δ-int(f(cl(V))) and hence f is weakly b-δ-open. 
 

Theorem  3.6.   For  a function  f : (X, τ ) → (Y, σ), the following conditions  are equivalent: 

(1) f is weakly b-δ open; 

(2) f(U) ⊆ b-δ-int(f(cl(U))) for each preopen set U of (X, τ ),  

(3) f(U) ⊆ b-δ-int(f(cl(U))) for each  -open set U of (X, τ ),  

(4) f(int(cl(U))) ⊆ b-δ-int(f(cl(U))) for each open set U of (X, τ ),  

(5) f(int(F)) ⊆ b-δ-int(f(F)) for each closed set F of (X, τ ).  
 

Proof: Follows from definitions of open, pre-open,  -open sets. 
 
 

Theorem 3.7. Let X be a regular space.  A function f: (X, τ) → (Y, σ) is weakly b-δ -open if and only if f is b-δ -open. 
Proof. The sufficiency is clear. 

For the necessity, let W be a nonempty open subset  of (X, τ ).  For each x in W , let  Ux  be an open set  such that x ∈ Ux  

⊆ cl(Ux ) ⊆ W .   Hence we obtain  that W  = {Ux  : x ∈ W } ⊆ {cl(Ux) : x ∈ W } and f (W ) =  {f (Ux) : x ∈ W } ⊆

 {b-δ-int (f (cl(Ux))) : x ∈ W } ⊆b-δ-int (f ( {c l(Ux) : x ∈ W })) = b-δ-int (f (W )). Thus f is b-δ -open. 

 

Theorem  3.8.    If f:   (X, τ) → (Y, σ) is weakly b-δ -open and s trong ly  continuous, t h e n  f is b-δ -open. 

Proof. Let U be an open subset of (X, τ ). Since f is weakly b-δ -open, f (U ) ⊆ b-δ-int (f (cl(U ))). However, b e c a u s e  f  is 

strongly cont inuous ,   f (U )  ⊆ b-δ-int (f (U )). Therefore  f (U ) is b-δ -open. 

Theorem  2. 22. If a function f:   (X, τ) → (Y, σ) is weakly b-δ -open and precontinuous , then f is β-open. 

Proof.  Let  U be an open subset  of X .  Then by weak b-δ -openness o f  f ,  f ( U )  b-δ-int(f(cl(U))). Since f is 

precontinuous, f(cl(U)) cl(f(U)).  

Hence we obtain that 

f (U ) ⊆ b-δ-int  (f (cl(U ))) 

⊆ b-δ-int (c l(f (U ))) 
= bint(cl(f (U ))) 

= sint(cl(f (U )))  pint(cl(f (U ))) 
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⊆ c l(int(cl(f (U ))))   int(cl(f (U ))) 

⊆ c l(int(cl(f (U )))) 

which shows that f (U ) is a β-open set in Y . Thus f is a β-open function. 
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