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Abstract: Inspired by the success of Apache’s Hadoop this paper suggests an innovative reduce task scheduler. Hadoop is an open 
source implementation of Google’s MapReduce framework. Programs which are written in this functional style are automatically 
executed and parallelized on a large cluster of commodity machines. The details how to partition the  input data, setting up the 
program's for  execution across a set of machines, handling machine failures and managing the required inter-device communication is 
taken care by runtime system. In existing versions of Hadoop, the scheduling of map tasks is done   with respect to the locality of their 
inputs in order to diminish network traffic and improve performance. On the other hand, scheduling of reduce tasks is done without 
considering data locality leading to degradation of performance at requesting nodes. In this paper, we exploit data locality that is 
inherent with reduce tasks. To accomplish the same, we schedule them on nodes that will result in minimum data- local traffic. 
Experimental results indicate an 11-80 percent reduction in the number of bytes shuffled in a Hadoop cluster. 
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I. INTRODUCTION 
 
 
Every day, the Stock Exchange generates every day about one terabyte of new trade data [3]. Facebook generates 5 Billion terabytes of 
data every day. Any such data that cannot be placed into a database falls under the category of unstructured data. As an entity's data 
footprint grows, the amount of unstructured data to be handled becomes enormous. This is a major cause for several problems .First, 
where will all this Big Data, as it is being called today, be stored. Second, how do we access all this data, process and analyse the 
contents. Third, how do we ensure that this data is safe from disk failures, computer failures and so on. These problems are well-dealt 
by Hadoop; a reliable, scalable, distributed computing platform developed by Apache [5].It is an open source implementation of 
Google’s MapReduce framework that allows for the distributed processing of huge data sets transversely clusters of computers using 
simple programming models. It is designed to level  up from single datacenter  to thousands of machines, each offering local 
computation and storage. At the application layer the library is designed to detect and handle failures, Instead of relying onhardware to 
deliver high-availability, so a highly-available service on top of a cluster of computers, can be delivered  each of which may be prone to 
failures Page Layout. Hadoop has an underlying storage system called HDFS-Hadoop Distributed file system. To process the data in 
HDFS, Hadoop provides a MapReduce engine that runs on top of HDFS. This engine has master-slave architecture. The master node is 
called the JobTracker and the slaves are called TaskTrackers. MapReduce jobs are automatically parallelized across a large set of 
TaskTrackers. The JobTracker splits the job into several maps and reduce tasks. Hadoop divides the input to the job into fixed size 
pieces called input splits. The outputs of the map tasks are stored in the local disk. This intermediate output serves as input to the 
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reduce tasks. The consolidated output of the reduce task is the output of the MapReduce job and is stored in HDFS. 
   

 Recently, the non-profit organization Spamhaus, which publishes spam blacklists, faced one of the most powerful cyber-attacks seen. 
This led to cyberspace congestion which affected the Internet overall. The providers of Spamhaus as well as certain Tier 1 Internet 
Exchanges were the victims of the attack. Cloudflare dubbed it as the attack "that almost broke the Internet." These incidents do 
highlight the need to develop more efficient security measure to combat such attacks but it also indicates how uncontrolled network 
congestion can handicap the Internet as a whole. Measures must be taken to tackle any source of congestion within a network. With 
companies like Facebook, Amazon, AOL and The NY Times using the Hadoop framework which in turn is a cluster of computers 
connected via a LAN or MAN connection, there is a need to handle any areas that could result in network traffic and hence result in 
significant delay in providing services to the end user. 
A typical Hadoop cluster is a set of computers connected via LAN connection. In case of companies like Facebook, Yahoo, Amazon 
these clusters consist of thousands of nodes. These Hadoop workers are located in different data centers that are present in 
geographically dispersed locations thereby avoiding the domino effect that is prevalent when all nodes are connected by a single LAN. 
A typical MapReduce job may use nodes across data centers .Each node has a local disk, it is efficient to move data processing 
operations to nodes where application data are located. If data are not available locally in a processing node, data have to be migrated 
via network interconnects to the node that performs the data processing operations. Migrating huge amount of data across data centers 
and in some cases within data centers may lead to excessive network congestion especially when petabytes of data have to be 
processed. 
In Hadoop, scheduling reduce tasks results in severe congestion problems. The reason being Hadoop task scheduling is based on a ‘pull 
strategy’. The JobTracker does not push map and reduce tasks to TaskTrackers but rather TaskTrackers pull them by making requests. 
Every TaskTrackers sends a periodic heart beat message requesting a map or reduce tasks. When the JobTracker schedules map tasks, 
it takes care to ensure that the task runs on a TaskTracker which contains the needed input split. As a result Hadoop MapReduce is said 
to be data local when scheduling map tasks. On the other hand Hadoop simply schedules any yet-to-run reduce task on any requesting 
TaskTracker regardless of the TaskTracker's network location [3].This has an adverse effect on network traffic . 
This paper proposes scheduling data local reduce tasks. The method ensures that reduce tasks run on a suitable TaskTracker such that 
there is minimum bytes traveling across the network. Thus, there is a controlled use of the clusters network bandwidth. We have 
implemented our method on Hadoop 1.0.3. 
The rest of this paper is organized as follows. A background on Hadoop MapReduce is given in Section 2. Our proposal and 
implementation is presented in Section 3, and a performance evaluation in Section 4.Lastly we   indicate future works and conclude 
the paper in Section 5. 

 II. BACKGROUND :REDUCE TASK SCHEDULER  
 

Hadoop assumes a tree-style network topology similar to the one shown in the figure. Nodes are distributed over different racks 
contained in one or many data centers. A salient point is that the bandwidth between two nodes is dependent on their relative 
locations in the network topology. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig1 : Network Topology in Hadoop (D= data center, R = rack, and H = node) 
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For example, nodes that are on the same rack will have higher bandwidth between them as opposed to nodes that are off-rack [19]. 
Previous attempts to make reduce tasks locality aware focused on rack-locality not data-locality .The tasks were scheduled in racks that 
held the largest intermediate output. However, this does not address the problem when using zero or one rack or the network traffic 
that is prevalent when scheduling reduce tasks within a single data center. There is need to penetrate deeper into the network 
hierarchy. In other words, optimization so far to make reduce tasks locality aware, addresses scenarios with many nodes connected via 
racks. The approach proposed in this paper further optimizes scheduling reduce tasks in small, medium and large clusters. Further, it 
works in the presence or absence of racks. It addresses the problem when there are two nodes and also when there are innumerable 
nodes. 

 
III. THE DATA-LOCAL REDUCE TASK SCHEDULER 
 

A. Motivation  
 

Consider the scenario as shown in Fig.1.  Node 1 holds 5 MB IO: R1 (intermediate output for reducer 1)  
and  10 MB IO: R2 (intermediate output for reducer 2). While Node 2 holds 2 MB IO: R1 and 26 MB IO: R2. Node 3 holds 15 MB 
IO: R1 and 1MB IO: R2 .Once the map tasks are scheduled, Node 2 requests the JobTracker for permission to run reducer 1. As a 
result 20 MB of intermediate output must be transferred over the network. On the other hand node 1 requests to run reducer 2.As a 
result 27 MB must be moved to node 1. Hence, a total of 47 MB utilizes the cluster bandwidth. If node 1 or node 2 is situated in 
different racks compared to other nodes more congestion in the network will be prevalent. If this scenario were modified, such that 
reducer 1 ran on node 3 and reducer 2 ran on node 2, then 7MB and 11MB of data would be shuffled. Clearly, this result in an 
improvement of 50 % reduction in the number of bytes shuffled. Hadoop's present reduce task scheduler is incapable of making such 
decisions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2 : Scheduling Reduce Tasks in native Hadoop 

 
 

B. Implementation 
 
 We have implemented our method on Hadoop 1.0.3 as follows: 

 Formulation of a data structure that keeps track of the size of intermediate output generated by a mapper for every reducer - 
There are two in-built features of Hadoop that are exploited to gather the input required by the reduce task scheduler: Index 
File and Heartbeat protocol. The size of the intermediate output generated by a map task is available in the current versions of 
Hadoop. However, the manner in which the intermediate output is intended to be divided among the reducers is necessary. 
This information is available in the index file and is stored in the local file system of every TaskTracker. Heartbeat is a 
mechanism for a TaskTracker to announce periodic availability to the JobTracker. Besides the heartbeat, the TaskTrackers 
send information regarding its states to the JobTracker. By making modifications in appropriate classes, the JobTracker 
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collects the index file information from the local file system of the TaskTracker via the information sent along with the 
heartbeat message. 

 

 Controlling the scheduling of reduce tasks - Using the generated data structure, the TaskTracker that holds the largest 
intermediate output for a particular reduce  task is determined. Upon which the reduce task scheduler takes the 
requesting TaskTracker as an input along with a set of unscheduled reduce tasks. For each reduce task that must be 
scheduled, the scheduler checks if the requesting TaskTracker is the one that contains the largest intermediate output. If 
so, the reduce task is scheduled on the requesting TaskTracker. Otherwise, another requesting TaskTracker is 
considered. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

C. Working Example 
 

The JobTracker maintains a record that ensures that a reducer runs only on TaskTrackers that hold the largest intermediate output. 
The scenario mentioned previously is modified as shown in fig.3. In this case, to minimize data local traffic by a significant amount, the 
JobTracker analyzes and concludes that reducer 1 and reducer 2 must run on node 3 and node 2 respectively. The JobTracker initially 
is required to run reducer 1. The request from TaskTracker node 1 is rejected. Similarly, the request from TaskTracker node 2 is also 
overruled. Upon receiving a request from node 3, the JobTracker schedules the execution of reducer 1. Likewise, in the case of 
reducer 2, the requests of TaskTracker node 1 and node 3 are vetoed. The JobTracker schedules the execution of reducer 2 on node 2 
upon receiving a request from the latter. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 



        International Conference on Systems, Science, Control, Communication, Engineering and Technology         83 
 

 
Cite this article as:. Kokula Krishna Hari K, Vignesh R, Long CAI, Rajkumar Sugumaran . “Big Data - 

Reduced Task Scheduling.” International Conference on Systems, Science, Control, Communication, 

Engineering and Technology (2015): 79-84. Print. 

 

 
fig 3: Achieving Data-Local Reduce Tasks 

 
IV. PERFORMANCE EVALUATION 

 
All evaluations are performed on a four node cluster. Each node is a Intel® Core™2 Duo E8500 processor-based desktop. To run 
Hadoop, Ubuntu 12.10 and Sun/Oracle JDK 1.6, Update 20 has been installed on all computers.These nodes are connected by a 
100Mbps Ethernet through a single switch. Three benchmarks are used for comparison with Native Hadoop .They are wordcount, pi  
estimator and muti-file wordcount. Besides, [10] reported that wordcount is one of the major benchmarks utilized for evaluating 
Hadoop at Yahoo. The wordcount is a CPU intensive job .It generates adequate amount of intermediate output .Multi-file count is 
another variation of word count that increases the workload and processes several files. Pi Estimator is suitable for testing the Hadoop 
scheduler when it deals with 1 KB data or lesser.It is a scenario with one reducer. This benchmark indicates that the modified Hadoop 
scheduler is capable of handling traffic prevalent within a single data center or a small cluster. 
 
   The native Hadoop scheduler is capable of making any reduce task scheduling decisions. As a result, large amount of network 
bandwidth and MapReduce execution time were lost trying to transfer huge amounts of data within and across networks. The 
difference in the number of bytes shuffled varies with the size of the intermediate output generated, the number of mappers and the 
number of reducers. Each benchmark is run three times as shown in Fig.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4: Variations in the number of bytes shuffled for three different benchmarks 
 
In each case, the number of mappers and reducers are changed. The evaluation is performed on input size varying between120 bytes to 
500 MB. The evaluation is performed when the number of mappers varies between 1 and 6. The number of reducers varies between 1 
and 8. Further, as shown in Fig.5, the reduction in bytes shuffled grows with an increase in intermediate output and as a result with 
increase in the number of bytes input to the MapReduce program .The fluctuation is due to varying number of mappers and reducers. 
The modified Hadoop scheduler minimizes data-local traffic by 11-80 %. 
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V. CONCLUSION AND FUTURE WORKS 
 

Through this paper, we have proposed a reduce task scheduler that can be incorporated in future versions of Hadoop. Unlike previous 
attempts, this reduce task scheduler is not limited to achieving rack locality alone. Further, it ensures data local execution of reduce 
tasks in The most important business benefits of including the proposed reduce task scheduler in jobs. Furthermore Hadoop is fault-
tolerant and network Hadoop is lesser failure rates. This results in faster completion of intelligent scenarios with less than four nodes 
besides cases with nodes geographically distributed across data centers. Although, in circumstances with few bytes of input data the 
reduce task scheduler may appear to increase the execution time of a MapReduce job. However, this trend does not continue on 
increasing the number of bytes Hadoop operates on. Test results indicate a reduction of 11-80% in data local traffic. 
 
For companies using Hadoop, this could lead to saving several millions of dollars. As it eliminates the need to monitor traffic, and 
invest in more servers to achieve better load balancing. 

 
After demonstrating, the prospects of the modified reduce task scheduler, we have set forth two future directions. Firstly, a  proposal  
to  introduce  a  rejection  factor  that  imposes  control to   ensure     uniform     reduce     task     workload     among     all 
TaskTracker  nodes.  As  a  result,  if  a  TaskTracker  is  rejected  more  than  a  predetermined  number  of  times,  the  scheduler 
overrules    data     locality    and    ensures    uniform    workload distribution.     Secondly,     there     may    be     situations     where 
achieving rack locality is more essential than achieving data locality. Introduction of a locality factor that keeps track of the distance   
through   which   the   information   has   to   travel,   the inherent   congestion   in   the    network   lines   chosen   and    if 
transporting   more   bytes   can   result   in   better   MapReduce execution  time.  Based on the computed locality factor, the reduce 
task scheduler can make more intelligent decisions. 
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