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Abstract: The purpose of this paper is to define and study 𝑠𝑔∗-closed sets in bitopological spaces 
 

Keywords: Strongly 𝑔∗-closed sets 
 
 

1. INTRODUCTION AND PRELIMINARIES 
 
 

A triple (𝑋, 𝜏1,𝜏2) where 𝑋 is a non-empty set and 𝜏1 and 𝜏2 are topologies on 𝑋 is called a bitopological space and Kelly [3] initiated 
the study of such spaces.  

Throughout this paper (𝑋, 𝜏1, 𝜏2) or simply 𝑋 represents the bitopological spaces on which no seperaxion axioms are assumed unless 

otherwise mentioned. For any subset 𝐴 ⊆ 𝑋, 𝜏𝑖-𝑖𝑛𝑡(𝐴) and , 𝜏𝑖-𝑐𝑙(𝐴) denote the interior and closure of a set 𝐴 with respect to the 

topology 𝜏𝑖, respectively. 

Definition 1.1: A subset 𝐴 of a topological space (𝑋, 𝜏) is said to be  

(1) Semi-open [4 ] if 𝐴 ⊆ 𝑐𝑙(𝑖𝑛𝑡(𝐴)) 

(2)  Regular open if  𝐴 = 𝑖𝑛𝑡(𝑐𝑙(𝐴))   

Definition 1.2: A subset 𝐴 of a topological space (𝑋, 𝜏) is said to be generalized closed (briefly g-closed) [1 ] if 𝑐𝑙(𝐴) ⊆ 𝑈 

whenever 𝐴 ⊆ 𝑈 and  𝑈 is open in 𝑋. 

Definition 1.3: A subset 𝐴 of a topological space (𝑋, 𝜏) is said to be generalized* closed (briefly 𝒈∗-closed) [6]  if 𝑐𝑙(𝐴) ⊆ 𝑈 

whenever 𝐴 ⊆ 𝑈 and  𝑈 is 𝑔-open in 𝑋. 

Definition 1.4: A subset 𝐴 of a bitopological space (𝑋, 𝜏1, 𝜏2) is said to be  

(1) 𝜏1𝜏1-Semi-open [2 ] if 𝐴 ⊆ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) 

(2) 𝜏1𝜏2 -Regular open if  𝐴 = 𝑖𝑛𝑡(𝑐𝑙(𝐴))   

Definition 1.5: A subset 𝐴 of a bitopological space (𝑋, 𝜏1, 𝜏2) is said to be 𝜏1𝜏2-generalized closed (𝜏1𝜏2-g- closed) [ ] if 

𝜏2𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and  𝑈 is 𝜏1-open. 

Definition 1.6: A subset 𝐴 of a bitopological space (𝑋, 𝜏1, 𝜏2) is said to be 𝜏1𝜏2-generalized* closed (𝜏1𝜏2-𝑔∗- closed) [ ] if 

𝜏2 − 𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and  𝑈 is 𝜏1-𝑔 open.  
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Definition 2.1: Let (𝑋, 𝜏1, 𝜏2) be a bitopological space and 𝐴 be its subset, then A is a strongly 𝑔∗-closed set (briefly 𝑠𝑔∗-closed) if 

𝜏2-𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and 𝑈 is 𝜏1- 𝑔 open 

Theorem 2.2: Let (𝑋, 𝜏1, 𝜏2) be a bitopological space. Every closed set is strongly 𝑔∗-closed set, but not conversely. 

Proof: Suppose that 𝐴 is closed. Let 𝑈 be an open set containing 𝐴. Then 𝜏2-𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) ⊆ 𝜏2 − 𝑐𝑙(𝐴) =  𝐴, which implies, 

𝜏2-𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) ⊆ 𝑈. Hence, 𝐴 is a strongly 𝑔∗-closed set. 

Example 2.3: Let 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏1 = {∅, {a}, {b}, {a, b}, X} and 𝜏2 = {∅, {𝑎}, {𝑎, 𝑏}, 𝑋}. Then the set {𝑎, 𝑐} is a strongly 𝑔∗-
closed set but not a closed set.   

Theorem 2.4: If a subset 𝐴 of a bitopological space (𝑋, 𝜏1, 𝜏2) is 𝑔∗-closed then it is strongly 𝑔∗-closed in 𝑋, but not conversely. 

Proof: Suppose 𝐴 is 𝑔∗-closed in (𝑋, 𝜏1, 𝜏2). Let 𝐺 be an open set containing 𝐴 in 𝑋. Then 𝐺 contains 𝜏2 − 𝑐𝑙(𝐴) and 𝐺 ⊇ 𝜏2 −

𝑐𝑙(𝐴) ⊇ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)). Thus, 𝐴 is strongly 𝑔∗-closed in 𝑋. 

Example 2.5: Let 𝑋 = {𝑎, 𝑏, 𝑐} with topologies 𝜏1 = {∅, {𝑏}, {𝑐}, {𝑏, 𝑐}, 𝑋} and 𝜏2 = {∅, {𝑎, 𝑐}, 𝑋}. In this topological space the 

subset {𝑎} is strongly 𝑔∗-closed but not a 𝑔∗-closed set. 

Theorem 2.6: If a subset 𝐴 of a topological space (𝑋, 𝜏1, 𝜏2) is both open and strongly 𝑔∗-closed, then it is closed. 

Proof: Suppose a subset 𝐴 of 𝑋 is both open and strongly 𝑔∗-closed. Then 𝐴 ⊇ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) ⊇ 𝜏2 − 𝑐𝑙(𝐴) and so 

𝐴 ⊇  𝜏2 − 𝑐𝑙(𝐴). Since 𝜏2 − 𝑐𝑙(𝐴) ⊇ 𝐴, we have, 𝐴 = 𝜏2 − 𝑐𝑙(𝐴). Thus 𝐴 is closed in 𝑋. 

Theorem 2.7: If a subset 𝐴 of a bitopological space (𝑋, 𝜏1, 𝜏2) is both strongly 𝑔∗-closed and  semi-open then it is 𝑔∗-closed. 

Proof: Suppose 𝐴 is both strongly 𝑔∗-closed and semi-open in 𝑋, let 𝐺 be an open set containing 𝐴. As 𝐴 is strongly 𝑔∗-closed, 

𝐺 ⊇ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)).  Now, 𝐺 ⊇ 𝜏2 − 𝑐𝑙(𝐴), since 𝐴 is semi-open. Thus 𝐴 is 𝑔∗-closed in 𝑋. 

Corollary 2.8: If a subset 𝐴 of a bitopological space (𝑋, 𝜏1, 𝜏2) is both strongly 𝑔∗-closed and open then it is a 𝑔∗-closed set. 

Proof: Suppose 𝐴 is both strongly 𝑔∗-closed and open in 𝑋, let 𝐺 be an open set containing 𝐴. 

As 𝐴 is strongly 𝑔∗-closed,  𝐺 ⊇ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) and 𝐺 ⊇ 𝜏2 − 𝑐𝑙(𝐴), since 𝐴 is open. Thus, 𝐴 is 𝑔∗-closed in 𝑋. 

Theorem 2.9: A subset 𝐴 is strongly 𝑔∗-closed if and only if 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) − 𝐴 contains no non-empty closed set. 

Necessity: Suppose that 𝐹 is a non-empty closed subset of 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) − 𝐴. i.e., 𝐹 ⊆ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴))  ∩

(𝑋 − 𝐴). Then 𝐹 ⊆ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) and 𝐹 ⊆ (𝑋 − 𝐴). Since 𝑋 − 𝐹 is an open set and 𝐴 is strongly 𝑔∗-closed, 𝜏2 −

𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) ⊆ (𝑋 − 𝐹). i.e., 𝐹 ⊆ (𝑋 − 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴))) . Hence, 𝐹 ⊆ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) ∩ (𝑋 − (𝜏2 −

𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) = ∅. i.e., 𝐹 = ∅. Thus, 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) − 𝐴 contains no non-empty closed set. 

Sufficiency: Conversely, assume that 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) − 𝐴 contains no non-empty closed set. Let 𝐴 ⊆ 𝑈, 𝑈 is g-open. 

Suppose that 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) is not contained in 𝑈. Then  𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) ∩ (𝑋 − 𝑈) is a non-empty closed set and 

contained in 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) − 𝐴 which is a contradiction. Therefore, 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) ⊆ 𝑈 and hence A is strongly 

𝑔∗ - closed. 

Corollary 2.10: A strongly 𝑔∗ - closed set A is regular closed if and only if 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) − 𝐴 is closed and 𝜏2 −

𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) ⊇ 𝐴. 

Proof: Assume that A is regular closed. Since 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) = 𝐴, 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) − 𝐴 = ∅ is regular closed and 
hence closed. 

Conversely, assume that 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) − 𝐴 is closed. By Theorem 9, 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) − 𝐴 contains no non-empty 

closed set. Therefore, 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) − 𝐴 = ∅. Thus, A is regular closed. 

Theorem 2.11: Suppose that 𝐵 ⊆ 𝐴 ⊆ 𝑋, B is a strongly 𝑔∗- closed set relative to A and that both open and strongly 𝑔∗-closed 

subset of (𝑋, 𝜏1, 𝜏2) then B is a strongly 𝑔∗ - closed set relative to (𝑋, 𝜏1, 𝜏2).  

Proof : Let 𝐵 ⊆ 𝐺 and G be an open set in (𝑋, 𝜏1, 𝜏2). But given that 𝐵 ⊆ 𝐴 ⊆ 𝑋, therefore 𝐵 ⊆ 𝐴 and 𝐵 ⊆ 𝐺. This implies, 

𝐵 ⊆ 𝐴 ∩ 𝐺. Since B is strongly 𝑔∗ - closed relative to A, 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐵)) ⊆ 𝐴 ∩ 𝐺. i.e., 𝐴 ∩ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐵)) ⊆

𝐴 ∩ 𝐺. This implies, 𝐴 ∩ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐵)) ⊆ 𝐺. Thus, 𝐴 ∩ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐵)) ∪ (𝑋 − (𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐵)))) ⊆

 𝐺 ∪ (𝑋 − 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐵))). Also, 𝐵 ⊆ 𝐴 which implies 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐵)) ⊆ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) 

Corollary 2.12: Let 𝐴 be strongly 𝑔∗-closed and suppose that 𝐹 is closed then 𝐴 ∩ 𝐹 is a strongly 𝑔∗-closed set. 

Proof: To show that 𝐴 ∩ 𝐹 is strongly 𝑔∗-closed, we have to show 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴 ∩ 𝐹)) ⊆ 𝐺 whenever 𝐴 ∩ 𝐹 ⊆ 𝐺 and 𝐺 is 

𝑔-open. Since 𝐴 ∩ 𝐹 is closed in 𝐴, we have 𝐴 ∩ 𝐹 is strongly 𝑔∗-closed in 𝐴. By Theorem 4.11,  𝐴 ∩ 𝐹 is strongly 𝑔∗-closed in 

(𝑋, 𝜏1, 𝜏2),  since 𝐴 ∩ 𝐹 ⊆ 𝐴 ⊆ (𝑋, 𝜏1, 𝜏2). 

Theorem 2.13: If 𝐴 is strongly 𝑔∗-closed and 𝐴 ⊆ 𝐵 ⊆ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)), then 𝐵 is strongly 𝑔∗-closed. 

Proof: Given that 𝐵 ⊆ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) then 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐵)) ⊆ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)),  𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) −

𝐵 ⊆ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) − 𝐴. Since 𝐴 ⊆ 𝐵, and 𝐴 is strongly  𝑔∗-closed, by Theorem 4.9, 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) − 𝐴 

contains no non-empty closed set and 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐵)) − 𝐵 contains no non-empty closed set. Again by Theorem 4.9, 𝐵 is a 

strongly 𝑔∗-closed set. 

Theorem 2.14: Let 𝑋 and 𝑌 are bitopological spaces and let 𝐴 ⊆ 𝑌 ⊆ 𝑋 and suppose that 𝐴 is strongly  𝑔∗- closed in 𝑋 then 𝐴 is 

strongly 𝑔∗- closed relative to 𝑌. 
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Proof: Given that 𝐴 ⊆ 𝑌 ⊆ 𝑋 and 𝐴 is strongly 𝑔∗-closed in 𝑋. To show that 𝐴 is strongly 𝑔∗-closed relative to 𝑌, let 𝐴 ⊆ 𝑌 ∩ 𝐺, 

where 𝐺 is 𝑔-open in 𝑋. Since 𝐴 is strongly 𝑔∗-closed in 𝑋,  𝐴 ⊆ 𝐺 implies 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) ⊆ 𝐺. i.e., 𝐴 ⊆ 𝑌⋂𝐺, where 

𝑌 ∩ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) ⊆ 𝑌 ∩ 𝐺, where 𝑌 ∩ 𝜏2 − 𝑐𝑙(𝜏1 − 𝑖𝑛𝑡(𝐴)) is the closure of interior of 𝐴 in 𝑌. Thus 𝐴 is strongly 𝑔∗-

closed relative to 𝑌. 
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