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Abstract: A new set called regular δ-closed (briefly rδ) sets is introduced in this research which arises between the class of δ-closed sets and the class of all 
regular g-closed sets. In addition we study some of its vital properties and examine the relations between the associated topology.  
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1. INTRODUCTION AND PRELIMINARIES 
 

Norman Levine introduced and studied generalized closed (briefly g-closed) sets [11] and semi-open sets [12] in 1963 and 1970 
respectively.  Arya and Nour [3] defined generalized semi-closed (briefly gs-closed) sets for obtaining some characterizations of s-
normal spaces in 1990.  

Njåstad [17] introduced the concepts of -sets (known as -open sets) and -Sets (known as -open sets) for topological spaces. 

Andrijević [1] called -sets as semi-preopen sets. H. Maki called generalized -open sets in two ways and introduced generalized - 

closed(briefly g-closed) sets[13] and -generalized closed(briefly g-closed) sets[14] in 1993 and 1994 respectively. Dontchev [6] 
introduced generalized semi-preclosed (briefly gsp-closed) sets in 1995. Palaniappan and Rao [18] introduced regular generalized 
closed (briefly rg-closed) sets in 1993. Gnanambal [10] introduced generalized pre regular closed (briefly gpr-closed) sets. In this 

paper, we study the relationships of δ-closed sets with regular generalized closed sets.We obtain basic properties of regular δ -closed 
sets.  

Throughout this paper (𝑋, 𝜏), (𝑌, 𝜎) and (𝑍, 𝜂) (𝑜𝑟 𝑋, 𝑌, 𝑍) represents topological spaces on which no seperaxion axioms are 

assumed unless otherwise mentioned. For a subset A of a space  (𝑋, 𝜏), 𝑐𝑙(𝐴), 𝑖𝑛𝑡(𝐴) and 𝐴𝑐  (𝑜𝑟 𝑋 − 𝐴) denote the closure of A, 
the interior of A and the complement of A in X, respectively.  

Definition:1.1 A subset A of a topological space (𝑋, 𝜏) is called: 

1. pre open [16] 𝐴 ⊆ 𝑖𝑛𝑡(𝑐𝑙(𝐴)), 

2. semi open[12]  𝐴 ⊆ 𝑐𝑙(𝑖𝑛𝑡(𝐴)), 

3. regular open [19] 𝐴 = 𝑖𝑛𝑡(𝑐𝑙(𝐴)). 
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Definition:1.2 A subset A of a topological space (𝑋, 𝜏) is called: 

1. a generalized closed set (briefly g-closed) [11] if 𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and U is open in (𝑋, 𝜏), 

2. a 𝛼𝑔-closed [13] if  𝛼𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and U is open set in (𝑋, 𝜏), 

3. a �̂� –closed [20]  if 𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and U is semi open set in (𝑋, 𝜏). 

4. a 𝑔𝑠 –closed [3]  if 𝑠𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and U is open set in (𝑋, 𝜏). 
 
The complements of above sets are called their respective open sets. 

Definition 1.3 A subset A of a topological space (X,τ) is called Regular δ-closed (rδ-closed)  if A = clδ(A) where  

𝑐𝑙𝛿(𝐴) = {𝑥𝜖𝑋: 𝑖𝑛𝑡(𝑐𝑙𝛿(𝑈)) ∩ 𝐴 ≠ ∅, 𝑈 ∈ 𝜏 𝑎𝑛𝑑 𝑥 𝜖𝑈}  whenever 𝐴 ⊆ 𝑈 and U is regular open in (X,τ). 

2. R δ - closed sets 

Theorem : 2.1 Every rδ- closed set is a g- closed set. 

Proof: Obvious. 

The converse of the above theorem is not true in general as it can be seen from the following example. 

Example:  2.2 Let X = {x, y, z} = τ = {∅, X, {x}, {y, z}} and D = {y}. D is not a g- closed set since {y} is a g-open set of (X,τ) 

such that 𝐷 {𝑦} but 𝑐𝑙 )(D = 𝑐𝑙 }}{{y = {𝑦, 𝑧} {𝑦} 

      The following theorem shows that the class of rg-closed sets is properly contained in the class of αg-closed sets, the class of gs-

closed sets, the class of gsp-closed sets, the class of gp-closed sets, the class of gpr-closed sets, the class of αg-closed. 

Corollary: 2.3 Union (intersection) of any rδ -closed sets is again rδ -closed. 

Corollary: 2.4Let A be a rδ -closed of (X, ). Then A is closed if and only if cl(A)-A is semi-closed. 

Corollary:2.5 In a submaximal space (X, ), every rδ -closed set is closed. 

Theorem :2.6  Let A be a rδ -closed set of (X, ). Then cl(A)-A does not contain any non-empty semi-closed set. 

Proof: Let F be a semi-closed subset of (X, ) such that F  cl(A)-A. Then F  X-A. This implies A  X-F. Now X-F is semi-open set 

of (X, ) such that A  X-F. Since A is a rδ -closed set of (X, ), then cl(A)  X-F. Thus F  X-cl(A). Now F  cl(A)  (X-cl(A)) 

=∅.Therefore F = ∅. 

Theorem :2.7 Every rδ-closed set is rg-closed set but not conversely. 

Proof:Let A be rδ -closed set of (X, ). Let G be a regular open set such that A  G. Then A  int(cl(G)). Since int(cl(G)) is semi-

open set containing the rδ -closed set, then cl(A)  int(cl(G)). Therefore A is an rg-closed set. 

Theorem :2.8 Every closed (resp. ĝ-closed) set is an r δ-closed set. 

Proof: From the following example we will prove that the converse of the above theorem is not true. 

Example :2.9  Let X = {a, b, c} and  = {∅, X, {a}, {b, c}}. Consider A = {b}. A is not a closed set. However, A is an rδ-closed 
set. 

Example :2.10  Let X = {a, b, c} and  = {∅, X, {a}, {a, c}}. Consider A = {a, b}. A is not an rδ -closed set. However, A is a g-
closed set. 

Therefore, the class of rδ-closed sets is properly contained in the class of g-closed sets and properly contains the class of closed sets. 

Theorem :2.11 Every rδ-closed set is g-closed, g-closed, and gs-closed set but not conversely. 
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Proof: Follows from the previous theorem and the fact that every rδ-closed set is an g-closed set, gs-closed set and scl(A)  cl(A) 

 cl(A) for any subset A of a space (X, ).  

Consider the space (X, ) in the Example. The set B = {c} is g-closed and g-closed and hence sg-closed and gs-closed. But B is not 

an rδ -closed set.  

Thus the class of rδ-closed sets properly contains the class of g-closed sets, the class of g-closed sets, the class of gs-closed sets and 
the class of sg-closed sets. Next we show that this new class also properly contains the class of rg-closed sets, the class of gpr-closed 
sets and the class of gsp-closed sets. 

Theorem :2.12 Let A be a rδ- closed set of a topological space (X,τ), Then, 𝑝𝑐𝑙𝛿(𝐴)is rδ- closed.  

Proof:A subset A of (X,τ), 𝑠𝑐𝑙𝛿(𝐴) = 𝐴 ∪ 𝑖𝑛𝑡(𝑐𝑙𝛿(𝐴))and 𝑝𝑐𝑙𝛿(𝐴) = 𝐴 ∪ 𝑖𝑛𝑡(𝑐𝑙𝛿(𝐴)). 

Since 𝑝𝑐𝑙𝛿(𝐴) is the union of two rδ- closed sets A and 𝑐𝑙𝛿(𝑖𝑛𝑡(𝐴)).       

Example:2.13  Let X = {a, b, c} τ = {∅,X,{a},{b},{a, b} {a, c}}. Consider A = {c}. Here A is not regular open. This A is δ- 

closed and𝑠𝑐𝑙𝛿(𝐴) = 𝑝𝑖𝑛𝑡(𝐴) = Ø   is rδ- closed.   

Theorem : 2.14 If A is a rδ- closed set of (X), such that.  𝐴 ⊆ 𝐵 ⊆ 𝑐𝑙𝛿(𝐴) , then B is also rδ- closed set of (X,τ). 

Proof:Let U be a regular open set of (X,τ) such that 𝐵 ⊆ 𝑈 Then 𝐴 ⊆ 𝑈 since A is δ- closed the UAcl )( .  

𝑐𝑙𝛿(𝐵) ⊆ 𝑐𝑙𝛿(𝑐𝑙(𝐴)) = 𝑐𝑙𝛿(𝐴) ⊆ 𝑈. B is rδ- closed set of (X,τ). 𝐵 ⊆ 𝑈        

Theorem :2.15  Let A be a locally closed set of (X, ). Then A is rδ -closed if and only if A is closed.           

Proof:  Obvious. 

Theorem :2.16  If A is regular open, then sint(A) is rδ -closed. 

Proof: First we note that for a subset A of (X, ), scl(A) = A  int(cl(A)) and pcl(A) = A  cl(int(A)). Moreover, sint(A) = A  

cl(int(A)) and pint(A) = A  int(cl(A)). 

(1) Since cl(int(A)) is a closed set, then A and cl(int(A)) are rδ -closed sets. By the Theorem 3, A  cl(int(A)) is also a rδ -closed set.  

Theorem :2.17 If A is regular open ,then pcl(A) is rδ -closed. 

Proof: pcl(A) is the union of two rδ -closed sets A and cl(int(A)). Again by the Theorem 3,  

pcl(A) is rδ -closed. 

Theorem :2.18 If A is regular open, then pint(A) and scl(A) are also rδ -closed sets. 

 Proof:  Since A is regular open, then A = int(cl(A)). Then scl(A) = A  int(cl(A)) = A. Thus scl(A) is rδ -closed. Similarly pintA is 

also an rδ -closed set. 

Theorem :2.19 A is a rδ- closed of (X,τ) such that if and only if  𝑐𝑙𝛿(𝐴) -A does not contain any non-empty δ- closed set. 

Proof: Let U be a δ –regular open set of (X, τ) such that A ⊆U. If cl δ (A) ⊆ U, then cl δ (A)  ∩ C(U) =  ∅ . Since cl δ (A) is a closed 

set, then by [12], ∅= cl δ (A) ∩ C(U)  is a δ -closed set of (X, τ). Then  ∅= cl  (A) ∩ C(U) ⊆ clδ(A)-A. So cl δ (A)-A contains a non-

empty δ -closed set. A contradiction. Therefore A is r δ -closed. 
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