
`

Generating and Testing a Random Stream
using dynamic S box

Ambika H Shetty

National Institute of Technology Karnataka
Surathkal, Mangalore, India

Abstract This paper discusses about a new algorithm in the area of cryptography. The algorithm is
expected to find an extensive use in wireless telecom networks for end to end network security. A new
stream cipher based on dynamic S box is designed, implemented and tested in MATLAB. The new cipher
thus generated is tested through 16 different randomness tests mentioned in one of the NIST special
publication 800 22[2].For this implementation many references have been taken from the already existing
Advanced Encryption Standard structure. This work was done as part of the fulfillment of Master in
Technology at Manipal Institute of Technology, Manipal.

I. Introduction

We need security to feel safe in life. Whether it is about feeling or about the information security in
computer network, security has always been one of the main concerns. One of the several available
methods to secure the information in any network is cryptography. Stream ciphers and block ciphers are
one of the classifications of cipher structures. In this paper we concentrate mainly on stream ciphers since
our work and the findings are on stream ciphers.

Stream ciphers are essentially meant to be a pseudorandom generator. So this implementation work aims to
generate a stream that is random in nature. To verify the randomness of the resulting stream we apply
around 16 randomness tests on the stream. For that, we first implement those 16 tests in Matlab. And to
check the correctness of the Matlab implementation of these 16 tests, we apply these tests first on one of the
already existing stream cipher. And the reference stream cipher we take for this purpose is RC4 stream
cipher.

II. RC4 As Reference Algorithm

There is a high need to improve the existing stream ciphers by introducing more non linearity into it.Before
doing this we intend to study any of the existing stream cipher algorithm so as to make a comparative
study. And the algorithm that we choose for this purpose is the RC4 algorithm.

RC4 is a stream cipher designed in 1987 by Ron Rivest.It is a variable key size stream cipher with byte
oriented operations. The algorithm is based on the use of a random permutation. It is the most widely used
cipher. The algorithm is based on the use of a random permutation. Analysis shows that the period of the
cipher is overwhelmingly likely to be greater than 10100.Eight to sixteen machine operations are required per
output byte, and the cipher can be expected to run very quickly in software[1] .

Taking all these factors into consideration we come to a conclusion that RC4 is the best choice to start this
work. Accordingly we start with the implementation of RC4 algorithm in Matlab.

III. Statistical Test Suite for Validating Randomness

Next work is to validate the RC4 key stream as random. The intention behind this validation is not to test
the RC4 algorithm instead to make sure the correctness in the implementation of those 16 tests that are to
be run on RC4.

NIST issued a special publication (800 22) that discusses about aspects of selecting and testing random and
pseudorandom number generators [2]. The generators suitable for use in cryptographic applications may
need to meet stronger requirements than for other applications. NIST publication discusses about some

w
w
w
.e
d
li
b
.a
sd
f.
re
s.
in



`

criteria for characterizing and selecting appropriate generators. With help of these criteria we can decide
whether our new stream cipher generated is a perfect random generator or not.

Randomness is a probabilistic property. Various statistical tests can be applied to a sequence to attempt to
compare and evaluate the sequence to a truly random sequence. The properties of a random sequence can
be characterized and described in terms of probability. For each applied test, decision or conclusion is
derived that accepts or rejects the sequence that was produced. The statistic value is a function of the data.
Test statistic is used to calculate a P value that summarizes the strength of the stream generated. For these
tests; each P value is the probability that a perfect random number generator would have produced a
sequence less random than the sequence that was tested , given the kind of non randomness assessed by
the test. A P value 0.01 would mean that the sequence would be considered to be random with a
confidence of 99%.A P value < 0.01 would mean that the sequence is non random with a confidence of
99%[2].

IV. Random Number Generation Tests

The NIST Test suite is a statistical package consisting of 16 tests that were developed to test the randomness
of binary sequences produced by either hardware or software based cryptographic random or
pseudorandom number generators. The 16 tests are:

1. The frequency Test: Purpose is to determine whether the number of ones and zeros in a sequence
are approximately the same as would be expected for a truly random sequence.

2. Frequency Test within a block: Purpose of this test is to determine whether the frequency of ones
in an M bit block is approximately M/2, as would be expected under an assumption of randomness.

3. Runs Test: Purpose is to determine whether the number of ones and zeros of various lengths is as
expected for a random sequence.

4. Test for the Longest Run of ones in a Block: Purpose is to determine whether the length of the
longest run of ones that would be expected in a random sequence.

5. Binary Matrix Rank Test: Purpose is to check for linear dependence among fixed length substrings
of the original sequence.

6. Discrete Fourier Transform (Spectral) Test: Purpose is to detect the periodic features in the tested
sequence that would indicate a deviation from the assumption of randomness.

7. Non overlapping Template Matching Test: Purpose is to detect generators that produce too many
occurrences of a given non periodic pattern. For this test an m bit window is used to search for a
specific m bit pattern. If the pattern is not found, the window slides one bit position. If the pattern
is found, the window is reset to the bit after the found pattern, and the search resumes.

8. Overlapping Template matching Test: The difference between this test and test number 7 is that
when the pattern is found, the window slides only one bit before resuming the search.

9. Maurer’s Universal Statistical Test: Purpose of this test is to detect whether or not the sequence can
be significantly compressed without loss of information.

10. Lempel Ziv Compression Test: Purpose is to determine how far the tested sequence can be
compressed.

11. Linearity Complexity Test: Purpose of this test is to determine whether or not the sequence is
complex enough to be considered random.

w
w
w
.e
d
li
b
.a
sd
f.
re
s.
in



`

12. Serial Test: Purpose is to determine whether the number of occurrences of the 2m m bit
overlapping patterns is approximately the same as would be expected for a random sequence.

13. Approximate Entropy Test: Purpose is to compare the frequency of overlapping blocks of two
consecutive lengths against the expected result for a random sequence.

14. Cumulative Sums Test: Purpose is to determine whether the cumulative sum of the partial
sequences occurring in the tested sequence is too large or too small relative to the expected
behavior of that cumulative sum for random sequences.

15. Random Excursions Test: Purpose is to determine if the number of visits to a particular state
within a cycle deviates from what one would expect for a random sequence.

16. Random Excursions variant Test: Purpose is to detect deviations from the expected number of visits
to various states in the random walk.

All the above tests are implemented in Matlab and we run them on RC4 key stream. We find that all the
tests are successfully run on RC4 and give a P value 0.01. We can now proceed with the implementation
of new stream cipher based on dynamic S box.

V. Random Number Generation Tests

For new stream cipher generation we make use of the AES Key expansion method [1]. But here we use a
dynamic S box which is dependent on input key value. Then by using this dynamic S box we generate key
stream by AES Key expansion method.

To begin with stream cipher generation, we generate an S box depending on the input key value. We input
a 16 byte key value. The binary equivalent of this 16 byte key is stored in an array. We find a non singular
matrix by selecting first 8*8 = 64 bits of the array. If the determinant of the 8 by 8 matrix formed by these
64 bits is zero then we take next 64 bits (done by one bit left shift of the binary values in the key
array).Once we find a non singular matrix from the input key, we store it in another temporary array so
that it can be used later for S box generation. We keep a dummy key which will be useful, incase if the first
key fails to give a non singular matrix.

Now we proceed with the generation of dynamic S box by following the steps mentioned for AES algorithm.
But here modulo polynomial need not be constant always. Selection of irreducible modulo polynomial is
also left to the user. Also while doing affine transformation ax + b = c, the value of ‘c’ is also a user’s choice.
The matrix ‘a’ in the affine transformation is the one obtained by the input key [1].

Thus the resulting S box cannot be predicted just by looking at the input key and for different input keys
we are able to generate different S box providing non linearity to the cipher structure. We use this dynamic
S box providing non linearity to the cipher structure. We use this dynamic S box in AES Key expansion
method to produce the key stream [4].

Finally to validate the randomness of the resulting key stream we apply the NIST tests on key stream.
Figures 1 and 2 give a flowchart of the implementation work carried out. Key Stream shown in figure 2 is the
generated random stream upon which FIPS mentioned 16 tests were successfully tested.

w
w
w
.e
d
li
b
.a
sd
f.
re
s.
in



`

VI. Preliminary Result Analysis

As explained earlier, before we generate and test our new stream cipher we should be sure about the
working of the 16 randomness tests we have implemented. For this purpose we take RC4 as the reference
algorithm because RC4 already known as a perfect random stream generator [4]. If all the 16 randomness
tests successfully run on RC4 and gives the desired result i.e., a P value 0.01, then we can be sure about
working / implementation of 16 randomness tests.

When we tested RC4 key stream with the 16 randomness tests we obtained a P value 0.01 for all 16 tests.
With this preliminary result it was easy to go ahead with our new stream cipher generation without any
confusion about the correctness in the implementation of 16 randomness tests.

No 

Input Key 

Convert to 7-

bit ASCII 

format 

Form 8 x 8 

matrix with 

first 64 bits 

Is

matrix 

non-

Yes

Use the non-singular 

matrix in affine 

transformation to 

generate S-box. 

A

Left shift the 

bits by one 

position 

Figure 1. S-box generation Figure 2. Key generation 

Key

Stream 

Input Key

Copy the key into first 

4 words, w[0] to 

w[4],of the expanded 

key

For i=4 to n 

temp = w[i-1] 

Is i 

mod 

No

Yes

w[i]=w[i-4] 

temp = Rotate word (temp) 

temp = Substitute word

A

temp = temp 

w
w
w
.e
d
li
b
.a
sd
f.
re
s.
in



`

VI. Results

We implemented all 16 tests in MATLAB and then these tests were run on the RC4 generated key stream.
We first generate 256 bytes of key stream. The generated key stream is tested for its randomness. Table 4.1
gives the result obtained when the tests were run on different lengths of key stream. As discussed in earlier
chapters the method of validating the randomness of key stream is by checking the P value. If the obtained
P value is less than 0.01 then the key stream is declared as non random. If the P value is greater than or
equal to 0.01 then the key stream is declared as a valid random key stream.

One fact to be observed here is that RC4 is already known for the randomness in its resulting key stream.
Therefore while testing RC4 we have not considered more than 3 to 4 scenarios. If by running at least 3
scenarios we can obtain a P value of greater than or equal to 0.01 that itself is a valid result to proceed for
the next step. The NIST Test suite however mentions that more the number of scenarios passed, better is
the resulting algorithm. While testing our new stream cipher therefore we consider many different
scenarios by taking different input keys. But only selected 5 scenarios are highlighted in table 1.

All the columns shown in table 1 are tested for a key stream length of 8800 bytes. We test the key stream for
different values of input key. There are two different input keys used in our implementation. One is to
generate the dynamic S box and the other to use for the key expansion routine. The key used for key
expansion routine is changed and for all the changed values of key we get different key streams. All the key
streams are tested for more than 15 scenarios and were observed to pass the tests successfully. In table 1 we
have highlighted only few test scenarios. Lempel Ziv test result has not been tabulated for the reason that
few of the parameters (mean and variance) required to calculate P value in this test are not provided in the
publication 800 22.So we neglect this test.

VI. How Better is Our New Stream Cipher Algorithm?

Now that we have seen and analyzed the test results for both RC4 and our new stream cipher based on
dynamic S box we should be able to differentiate the level of security provided by both the algorithms.

We see that both RC4 as well as new stream cipher pass NIST tests. Now the improvement or the increase
in amount of security provided by the new stream cipher lies solely in the fact that the S box used for the
implementation is highly unpredictable. None of the existing stream ciphers are making use of S box for the
key stream generation which itself is a big plus point in our new stream cipher generation.

No doubt RC4 has been the most widely used stream cipher so far because of its simplicity of
implementation; we see that there are still few loopholes in RC4 as mentioned in literature survey. So our
new stream cipher would probably be the better choice for more advanced applications.

Table 1 P values for new key stream

All

bits of

input

key =

‘0’

All bits

of

input

key =

‘1’

Random

key

All

except

last

one bit

of

key=’1’

All

except

last

one bit

of

key=’0’

Test #1 0.1918 0.5922 0.0775 0.2362 0.3981

w
w
w
.e
d
li
b
.a
sd
f.
re
s.
in



`

Test #2 0.9670 1.0000 0.9980 1.0000 0.0202

Test #3 0.6445 0.6300 0.0991 0.9801 0.7363

Test #4 0.9544 0.4862 0.6497 0.1187 0.0104

Test #5 0.5936 0.2101 0.5738 0.5868 0.6454

Test #6 0.5577 0.5577 0.2554 0.2561 0.5510

Test #7 0.0288 0.0288 0.1394 0.1394 0.0288

Test #8 0.1252 0.1257 0.1296 0.1255 0.1251

Test #9 0.0646 0.0127 0.0322 0.0908 0.0905

Test #11 0.5119 0.1927 0.7955 0.3084 0.5984

Test #12 0.6203 0.1260 0.5883 0.7211 0.3745

Test #13 0.5119 0.7719 0.6365 0.8334 0.9567

Test #14 0.9567 0.8344 0.8334 0.8145 0.7969

Test #15 0.8638 0.5922 0.8145 0.7680 0.8840

Test #16 0.4924 0.7628 0.0775 0.2362 0.3981

VI. Conclusion

Now that we have seen and analyzed the test results for both RC4 and our new stream cipher based on
dynamic S box we should be able to differentiate the level of security provided by both the algorithms.

The work concentrates only on the development of a new stream cipher based on AES dynamic S box.
While doing this we have given much attention to the randomness of the generated stream rather than how
fast our algorithm runs. Hence performance analysis of the stream cipher algorithm that we have developed
is still pending and to be taken as the part of future work. For checking the performance of the algorithm
through software implementation we can go for a high level language like C/C++ and a better operating
system like Linux of higher versions. We can also go for checking our stream cipher performance pertaining
to a specific application. For this we can select any of the existing communication system where there is
high requirement for encryption and decryption of data. Any security driven DSP application would be
suitable choice for this.

Acknowledgment

Author would like to thank Dr T G S Chandrasekharappa, professor at Manipal Institute of technology,
Manipal for his immense guidance and help throughout this project work.

References

1. William Stallings, “Cryptography and Network security” 4/e. Pearson, Prentice Hall.

2. NIST Special Publication 800 22,”A statistical test suite for Random and Pseudorandom number
generators for cryptographic applications”, May 15,2001.

3. S. Mister and S.E. Tavares,” Cryptanalysis of RC4 lik ciphers”, Pages 132 to 134,1999.

4. Krishnamurthy G N,V Ramaswamy,”Making AES Stronger: AES with key dependent S box”, Pages
388 to 394,Volume 8.No 9 September 2008.

w
w
w
.e
d
li
b
.a
sd
f.
re
s.
in


