
Fast Iterative algorithms for Airborne Radar Processing 

Samira Dib  

University of Jijel, Algeria 

 samiradib@yahoo.fr 

Malek Benslama  

University of Constantine, Algeria 

 ma_benslama@yahoo fr 

Mourad Barkat   

King Saud University, KSA  

mabarkat@KSU.EDU.SA 

Morad Grimes  

University of Jijel, Algeria  

grimes_morad@yahoo.fr

Abstract—The conventional space-time adaptive processing 

(STAP) such  as the sample matrix inversion  (SMI)  or the 

principal components (PC) methods  are computationally 

costly and require the estimation of the clutter covariance 

matrix from secondary data, which are assumed to be 

independent and identically distributed. However, in 

monostatic airborne radar, the data are not stationary. 

Consequently, to circumvent such a problem, we propose to 

investigate the performances of adaptive recursive subspace-

based algorithms of linear complexity using projection 

approximation subspace tracking (PAST) and orthonormal 

PAST(OPAST). In addition, we apply the fast implementation 

of the power iterations method for subspace tracking (FAPI), 

based on a less restrictive approximation than the well known 

projection approximation (API). Performance curves show 

that PAST, OPAST, API and FAPI algorithms do indeed allow 

a good detection of slow moving targets even with a low rank 

covariance matrix. We also show that in the case of Doppler 

ambiguous environment when combined a pseudo random 

staggered PRF, these algorithms give better results than the 

methods based on eigenvalues decomposition. 

Keywords-Airborne Radar Processing; STAP. 

I. INTRODUCTION 

For ground radars, all clutter echoes are received with a 
Doppler frequency zero, while for airborne radars, the total 
of all arrivals produces a Doppler clutter broadband. Space-
time processing, STAP, can provide a rejection of clutter to 
detect slow targets. Typically, STAP means the 
simultaneous processing of both the spatial signals received 
by multiple elements of an array antenna and the temporal 
signals provided by the echoes from a coherent pulse 
interval (CPI) [1, 2]. A space-time clutter filter has a narrow 
clutter notch, so that even slow targets fall into the pass 
band. Brennan and Reed [3] first introduced STAP to the 
radar community in 1973. With the recent advancement of 
high speed, high performance digital signal processors, 
STAP is becoming an integral part of airborne or space-
borne radars for MTI functions. However, the main 
disadvantage of STAP is its high computational cost, since 
it utilizes complex matrix operations and often in an 
iterative way. For this reason, some reduced-rank STAP 
algorithms have been developed [4-9]. In [1-14], it was 
shown that STAP has a good ability to extract targets from 

Doppler-spread clutter. On the other hand, the conventional
fully adaptive STAP known as the SMI method as well as 
the subspace-based eigencanceller are not recommended 
due to their prohibitive computational cost, which makes 
their real-time implementation very difficult [1]. 

   In [14], we studied the effect of the radar parameters on 
the detection of slow target where the point of Doppler 
ambiguities, reduction of rank and staggered PRF are well 
explained. In [15], we studied the performance of two 
iterative algorithms on the detection; namely PAST and 
OPAST algorithms. In this paper, we extent the analysis and 
study of subspace tracking for interference suppression 
detection algorithms of PAST and OPAST and include two 
others: the approximation power iteration (API) and its fast 
version (FAPI). The respective performances of these four 
detection algorithms are compared to the principal 
component method. 

We will show that good performances are achieved even 
in an ambiguous environment when using a staggered PRF.  
In Section 2, the mathematical model of data to describe the 
environment in which the radar operates is presented. In 
Section 3, we give a brief description of STAP with reduced 
rank (PC method) and staggered PRF. The proposed iterative 
algorithms are given in Section 4. In Section 5, the results 
are presented and discussed. A conclusion is given in Section 
6 highlighting the main results obtained. 

II. MATHEMATICAL MODEL OF DATA 

Consider a space time network with N antenna elements 
uniformly spaced and M delay elements for any antenna 
element at a constant pulse-repetition frequency (PRF). The 
data are then processed on one range of interest which 
corresponds to one slice of the data cube. 

A space time snapshot at range k in the presence of a 
target is given by [1] 

iXSX +=a                                                                  (1) 

where, Xi  is the vector of interferences (noise, jamming and 
clutter), α is the target amplitude and S is the space-time 
steering vector given by st SSS Ä= , St and Ss are the 

temporal and space vectors given respectively by  

];...;;;1[ )1(2222 ttt FMjFjFj
t eeeS ----= ppp

                  (2) 
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                  (3) 

PRFFF dt /= and lq /sin.dFs = are, respectively, the 

normalized Doppler and spatial frequency; d is the distance 
between the antenna elements and q  is the azimuth angle. 

The optimum weight of the STAP, which maximizes the 
signal to interference noise ratio, SINR, is given by [1]  

SRWopt
1-=a                                                                (4) 

R is the covariance matrix of the interferences, which is 
supposed to be known and is the sum of covariance matrices 
of the clutter, jammers and thermal noise. In practice, R is 
not known and must be estimated from the snapshots. The 
well-known SMI gives an estimate of the matrix by 
averaging over the secondary range cells, such that 

å
¹=

=
N

kll

H
llXX

L
R

,1

1ˆ                                                          (5) 

where k is the test range cell, and L is the number of 
secondary range cells.  

The performance of the processor can be discussed in 
terms of the Improvement Factor (IF). IF is defined as the 
ratio of the SINR of the output to that of the input of the 
Direct Form Processor (DFP) and is given by [1] 

SSWRW

RtrWSSW
IF

HH

HH

opt
..

)(..
=                                                (6) 

where W is the optimum weights of the interference plus 
noise rejection filter. 

Note that a notch, which is a reversed peak of the clutter, 
appears at the frequency in the direction of sight of the radar, 
while the width of this notch gives a measurement of the 
detection of slow moving targets. 

III. STAP WITH REDUCED RANK AND STAGGERED PRF

The fully adaptive techniques of signal processing cannot 
be applied for a real-time processing because of the high 
computational cost. The methods with reduced rank exploit 
the nature of the low rank matrix of interferences.     

The idea is the separation of the overall space into an 
interference subspace and a noise subspace [4-6]. A common 
method to obtain these subspaces is via singular value 
decomposition (SVD) of the interference-plus-noise 
covariance matrix. Such methods can reduce the sample 
support requirement to O(2r) (number of operations), where 
r is the rank of the covariance matrix, but at the expense of a 
considerable computational complexity due to the SVD 
O((NM)

3
) which prevents the real-time applications. 

The partially adaptive algorithms of the STAP consists in 

transforming the data with a matrix rMNCV ´Î  where r << 

MN in order to reduce the computational time. There are 
several methods for the covariance matrix rank reduction [4-
9], which may differ in the shape of the processor as well as 

in the selection of the columns of the matrix. The principal 
component is based on the eigenvectors conservation of the 
matrix of covariance of interferences corresponding to the 
dominant eigenvalues [4]. If we assume that the r columns of 
V are a subset of the eigenvectors of R, the improvement 
factor of the reduced rank can then be written as [2] 

SVVS

RVVtr
SVRVVVSIF

HH

H
HHH

RR
.

)(
)( 1-=                      (7) 

It is known that high PRF radars are ambiguous in range 
while for low PRF radars Doppler ambiguities occur and are 
caused by the overlapping of the edge lines with the true 
spectrum. This overlapping decrease gradually with each 
time the PRF is increased because the edge lines move away 
from each other by leaving the true spectrum without a shift. 
Therefore, the idea of using the change of PRF appeared to 
solve the problem of Doppler ambiguities. In [13], Klemm 
proposed the pseudorandom change of PRF consists in 
varying the interval of repetition of impulses PRI in a 
pseudo-random way by multiplying it by the term  

))(.1( mre+  for each impulse m where the random part r(m) 

is uniformly distributed on the interval [-1.1]. He 
demonstrated that this allows the elimination of Doppler 
ambiguities for optimum detection. 

IV. ITERATIVE ALGORITHMS FOR STAP 

To reduce the computational burden linked to SVD, 
recursive subspace tracking algorithms that update the 
subspace estimate, as long as a new snapshot is received, 
have been proposed in the literature [17-23]. They consist in 
recursively updating a weight vector at time k from the 
weight vectors obtained at time k-1 and by taking into 
account the current snapshot. These algorithms generally 
involve less computational operations than their block 
counterparts. They showed their effectiveness in several 
domains of signal processing, and in particular in array 
signal processing, filtering, spectral analysis, prediction, and 
in many other applications such as channel equalization, 
noise cancellation, speech coding, etc. They offer interesting 
perspectives in STAP. They can be classified depending on 
their computational complexities into O((NM)2r), O(NMr

2
),

and O(NMr) operations at each iteration (update) [23].  

In this context, we consider the class of the fastest, most 
robust and effective algorithms referred to as the linear or 
low complexity because they are the most important ones 
due to their suitability for real-time applications. We 
propose the application and the evaluation of the 
performances of the algorithm PAST and its orthogonal 
version (OPAST), then we apply the algorithms API and 
FAPI. A brief description of the main ideas of these 
algorithms is as follows. 

The projection approximation subspace tracking 
algorithm (PAST) proposed by Yang [18] is based on a 
novel interpretation of the signal subspace as the solution of 
an unconstrained minimization task. Because of its 
efficiency and simplicity, it is one of the successful 
subspace tracking algorithms known of the class with linear 
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complexity O(NMr). It is based on the optimization of the 
following criterion  

÷
ø
ö

ç
è
æ -=

2
.)( xWWxEWJ H                                              (8) 

where NMxrCWÎ is the matrix which engender the 

dominant subspace. It was shown that )(WJ has global 

minimum unique reached for QUW dopt =  where dU

contains the r greatest eigenvectors of R and rxrCQÎ is a 

unitary matrix [18]. 
A projection approximation is utilized to reduce the 

minimization task to the well known exponentially weighted 
least square problem. Substituting the mean in (8) by an 
exponential weighted sum, we obtain  

å
=

- -=
t

i

Hit ixtWtWixtWJ

1

2
)().()()())(( m      (9) 

Recursive Least Square (RLS) methods are then used to 
track the signal subspace considering the following 
approximation  

)().1()()( txtWtxtW HH -=                              (10) 

This approximation can be interpreted as follows: the 
projection of an observation vector x(t) on the columns of 
W(t) (unknown at the iteration t) is almost equivalent at its 
projection on W (t−1) estimated before on the observation 
x(t) (thus its name "Approximation Projection"). 
Substituting (10) in (9), we obtain the following modified 
criterion [17]: 

å
=

- -=
t

i

it iytWixtWJ

1

2
)().()())(( m               (11) 

where W is the estimated interference subspace basis,  m  is 

the forgetting factor, 10 <£ m , and )()1()( txiWiy H -= is 

the  cost function. 

The minimization of this criterion is equivalent to the PAST 
form  

1))1()()1()(1()()( ----= tWtRtWtWtRtW H         (12) 

PAST has fast convergence, because it is a recursive 
type of implementation. However, it does not guarantee 
orthonormality of the estimated subspace matrix, which 
might be needed in some applications [23]. To ensure global 
convergence and to guarantee the orthonormality of the 
noise subspace matrix at each iteration, in [19], an explicit 
orthonormalization at each iteration of PAST was carried 
out, which resulted in the orthonormal PAST (OPAST) 
algorithm. 

The Approximated Power Iteration (API) and Fast 
Approximated Power Iteration (FAPI) algorithms derive 
from the power method [19]. A less restrictive 
approximation than for PAST is used. Indeed it concerns the 
projection on the estimated subspace instead of the 
estimated subspace itself: 

)1().1()().( --» tWtWtWtW HH                             (13) 

Equation (13) is equivalent to  

)()1()( ttWtW Q-=                                                    (14) 

where )()1()( tWtWt H -=Q . Thus 

)())()()1(()( ttgtetWtW HH Q+-=                      (15) 

Using equation (15), knowing that )1( -tW  and )(tW are 

orthonormal, in addition that the error vector e(t) is 
orthonormal to )1( -tW  then  

2/1
2

)()()()(
-

÷
ø
ö

ç
è
æ +=Q H

r tgtgteIt                     (16) 

FAPI algorithm is a fast implementation of API 

(O(NMr)) which consists in substituting )(tQ by a faster 

computation of the inverse square root. 

V. RESULTS AND DISCUSSION 

In this Section, we discuss the effect of some algorithms, 
based on the reduction of the rank of the covariance matrix, 
on the detection of a target with a low power (SNR=0dB) 
and with a slow speed. The simulated environment 
considered is a linear side looking network of N=8 antennas 
apart with 2/l=d , half of the emitted wavelength, and the 

assumed number in the coherent processing cube is M=10. 
The dimension of the adaptive process is thus MN = 80. The 
elevation angle is fixed to 20°. The speed of the airborne 
radar is VR=100m/s, and the frequency of transmission is 
0.3GHz. The assumed environment of interferences consists 
of five jammers and ground clutter. The jammers are at 
azimuth angles of 0°, 180°, 60°, 90°, and 72°, with 
respective jammer to noise ratios (JNRs) of 13dB, 12dB, 
11dB, 10dB and 9dB. The clutter to noise ratio (CNR) is set 
equal to 8dB. This clutter covers the band [30°, 30°]. All the 
simulations are carried for more than 20 Monte Carlo runs. 
For the iterative algorithms, we use the improvement factor 

given by Expression (6) where SwwIW H )( -= and w is 

the estimated subspace of interferences. The forgetting 
factor of PAST, OPAST, API and FAPI algorithms is fixed 
at 99.0=m . 

Fig. 1 shows the eigenspectra for a known covariance 
matrix and for an SMI STAP covariance matrix. We note a 
clear distinction between the interferences subspace and 
noise subspace. An extension to Brenann’s rule, for a 
number of an effective rank for the covariance matrix of a 
side-looking radar, has been derived recently in [9] and is 
given by r =N+(β+J)(M−1) [16], where J denotes the 
number of jammers. In this case r = 35 and can actually be 
read directly from Fig. 1. 

The aim of this paper is to demonstrate the robustness of 
the algorithms PAST/ OPAST and FAPI by comparing their 
performances to PC method for low rank covariance matrix. 
On the other hand, we have to circumvent the problem of 
Doppler ambiguities by applying a staggered PRF method 
namely the pseudorandom one. We start by illustrating the 
effect of the rank and the PRF on the detection of slow 
targets. 

Fig. 2 shows the effect of the constant PRF on the 
eigenspectra. We observe that for high values of the PRF 
(low values of β), the subspace of signal is spread and thus 
there is an increase of rank of the covariance matrix. This is 
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due to the overlap of the sidebands which becomes more 
important with the decline in PRF, and consequently the 
effect of Doppler ambiguities will be more important and 
makes the target more difficult to detect. Indeed, if one 
compares the two results in (a) and (b) of Fig. 3 for the 
different PRFs; for a PRF equal the Nyquist frequency: 

PRF=4VR/l (sampling) and a PRF equal to half the 

frequency of Nyquist: PRF =2VR/l (subsampling), 
respectively, although we observe the well-known aliasing 
phenomenon, expressed here by the appearance of echoes 
sidelobe clutter. We can therefore say that the choice of the 
PRF is essential to ensure better detection. 

Figure 1. Eigenspectra for known covariance matrix and SMI STAP 
covariance matrix with N = 8, M = 10, J=2, JNR=CNR = 30 dB, β = 1 or 

l/.4 RVPRF =

Figure 2. Effect of the PRF on the eigenspectra of the  covariance matrix 

R, avec JNR=35 dB, N=8, M=10,  CNR = 30 dB, J=2 

Fig. 4 represents the reduction of rank using PC method 
in an unambiguous scenario and with different values of r.
The results obtained are almost the same for r=40 and r=20, 
and the notch approaches the optimal processor. Thus, it is 
recommended to work with this last value to reduce the 
computational time. The clutter effect is more pronounced 
when r decreases and the detection of slow targets is no 
longer possible for low values (r=8). For a medium value of 
rank of the covariance matrix r = 20 and an unambiguous 
environment ( l/.4 RVPRF= ), we can see from Fig. 5(a) that 

all the tested algorithms (PAST, OPAST, API and FAPI)  
are globally equivalent and present good performances: the 
notch is relatively thin compared to the optimal processor 
which leads to the detection of slow targets. We observe 
from Fig. 5(b) that recursive algorithms perform better in 
the case of a low rank value. Furthermore, we note that the 

recursive algorithms outperform the SMI algorithm in any 
case. For convenience and for more readability of the 
curves, The SMI STAP covariance matrix will not be shown 
on the next curves.  

In the presence of ambiguities ( l/2 RVPRF = ), we see 

from Fig. 6, the appearance of ambiguous notches. This is 
again due to the aliasing phenomenon. Fig. 6(a) shows that 
iterative algorithms present acceptable detection 
performances than those of PC method. In Fig. 6(b), we 
observe that the detection becomes impossible for PC 
method. Contrarily, the use of recursive algorithms 
overcome this problem and improves the detection.  
Performances are comparable to that obtained by the 
optimal processor. In conclusion, we can see that adaptive 
algorithms give a much better performance than the PC 
method, in terms of detection when the radar operates in an 
unambiguous environment and with low rank of reduction. 

To overcome the problem of ambiguities, we suggest the 
use of pseudorandom staggered PRF in combination of the 
iterative algorithms. We notice on the Fig. 7 that the 
detection becomes impossible with PC method while it is 
acceptable when applying iterative algorithms.  

VI. CONCLUSION 

In this paper we have considered the use of four iterative 
algorithms (PAST, OPAST, API and FAPI) for the 
suppression of interferences and thus, the detection of slow 
targets in monostatic airborne radar. We observed that the 
presence of ambiguities and the reduction of rank of the 
covariance matrix to low values degraded the performance 
of STAP in suppressing interferences and detecting slow 
targets. We showed that we can mitigate these problems by 
using recursive algorithms which can estimate recursively 
the weights of the clutter rejection filter. With a very low 
covariance matrix rank and with Doppler ambiguities, the 
simulation results confirmed the superior performance of the 
considered algorithms (PAST, OPAST, API and FAPI) 
compared to the SMI and PC methods even with the optimal 
filter. Also, it is shown that all the algorithms outperform 
SMI method when the covariance matrix is estimated from a 
data set with limited support.  

This comparative study proved that iterative algorithms 
could be applied for the reduction of the rank for the STAP 
because they give similar performances as those given by 
the methods of rank reduction, but gave a much better 
performance for low rank values. In addition, they present a 
very low computational complexity. In fact, it can be 
viewed From Table 1, that the complexity burden is O(MN)
instead of O((MN)

3
) for the PC processor. That’s why these 

algorithms can be considered as an economical approach in 
comparison with the other techniques. In addition, it was 
proven that the problem of Doppler ambiguities is resolved 
too, and thus these algorithms (PAST, OPAST, API and 
FAPI) achieved good performance for the detection of slow 
targets even with a low rank and an ambiguous 
environment. 
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(a)
(b)

Figure 3. Improvement Factor for the DFP with constant PRF for known and unknown R, N = 8, M = 10, 5.0/ =ld , r=20:                                                

(a) l/.4 RVPRF = ,          (b) l/2 RVPRF =

Figure 4. Improvement Factor for the PC-DFP with different  values of r and with l/.4 RVPRF=

(a) (b)

Figure 5. Improvement Factor for the iterative algorithms and PC-DFP with l/.4 RVPRF= :  (a) r = 20;  (b) r = 8 

(a) (b)

Figure 6. Improvement factor for the iterative algorithms and PC-DFP with l/2 RVPRF = : (a) r = 20; (b) r = 8 
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Figure 7: Improvement Factor with pseudorandom change of PRF, (r = 8) for PC, PAST, OPAST and FAPI algorithms: (a)  Optimal detector with constant 
PRF (PRF=2.VR /λ) ; (b) DFP- PC; (c) PAST; (d) OPAST; (e) API; (f) FAPI; (g) NM SMI; (h) 2NM SMI
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