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Abstract—In this paper, neural network modeling 

techniques are applied for modeling and design of 

microwave filter, where neural networks and filter coupling 

matrix are combined in an innovative way to deliver speed 

and accuracy of the overall filter design. Filter structure is 

decomposed into sub-structures representing each coupling 

mechanism, where the decomposition is used to simplify the 

overall high-dimensional neural- network modeling problem 

into a set of low-dimensional-network problem. Generalized 

scattering matrices (GSM) of the modules are calculated 

using mode-matching method. Equivalent circuit 

parameters, such as coupling value and insertion phase 

lengths are then extracted from EM data.  Neural network 

models are developed for each individual module, and are 

then combined to form a complete model. Good agreement is 

obtained between neural models and EM based data, where 

the proposed technique is very useful for neural-based 

microwave optimization and synthesis. Application of the 

method to a three cavity waveguide filter  is presented. 

Keywords-Segmentation method; coupling matrix; 

equivalent circuit; microwave filter; neural networks.  

I. INTRODUCTION 

The optimization of a microwave circuit is a problem 

where the differences between the circuit response and the 

desired response are minimized by adjusting the free 

parameters of the system. As a consequence, precise 

knowledge of the circuit response is needed to achieve a 

good design.  

In recent years, there have been increased interests in 

applying neural network (NN) to microwave design 

problems due to its superior computation speed and 

accuracy. Applications of NN are also found in 

microwave filter design and optimization [1]. There are 

generally two types of approaches.      In the first type, NN 

training data are based on full EM simulation of entire 

filter, which is only feasible for simple structures such as 

direct-coupled cavity filters. In the second type of 

approach, NN is used for direct modeling of the 

generalized scattering matrix (GSM) of each segment of 

the filter. For complex structures, large number of modes 

is required to ensure good accuracy. To model these EM 

data directly not only requires enormous amount of data, 

but also increases dimension of the NN output parameters, 

which increases training difficulty. Furthermore, reports 

are limited to relatively simple Tchebyscheff type of 

filters without cross couplings. 

In this paper, NN modeling techniques are applied to 

advanced microwave filter design, where coupling matrix 

is used to correctly characterize complex filter function. 

We develop a method where neural network and filter 

equivalent circuits are combined in a special way to 

predict filter physical parameter quickly [2]. The 

following approaches are taken to ensure feasibility of NN 

model development and to ensure reliability of the trained 

neural model: 

· The filter structure is decomposed into modules 

representing each coupling mechanism. Neural 

models are developed for each module instead of 

the entire filter. In doing so, it not only speeds up 

data generation but also reduces neural network 

size, which warrants better accuracy. Furthermore, 

the trained neural model may be applied to filters 

with any number of poles, as long as the filter 

configuration remains the same. 

· In each region, the generalized scattering matrix 

(GSM) is computed by mode-matching. Instead of 

trying to model the GSM directly; equivalent 

circuit parameters, such as coupling value and 

insertion phase lengths are extracted from EM data 

first. 

· In each region of the microwave circuit, the circuit 

parameters are approximated applying multi-layer 

perceptrons (MLPs). The expression of an MLP 

with two layers of weights can be written [3]:

             (1) 

Where xi, is the ith input, yk is the kth output, fk (.) and fj (.)

are activation functions (typically: sigmoid, tanh ...), Ni,

Nh and No are the numbers of neurons in the input, hidden 

and output layers respectively  and the w are adjustable 

Proceedings of The first International Conference on Nanoelectronics, Communications and Renewable Energy 2013 180

ICNCRE ’13 ISBN : 978-81-925233-8-5 www.edlib.asdf.res.in

D
o
w
n
lo
a
d
e
d
 f
ro

m
 w

w
w
.e

d
lib

.a
sd

f.
re

s.
in



parameters called weights. The use of the MLPs is based 

on the universal approximation theorem, using which it 

can be deduced that an MLP with only two layers of 

weights is capable of modeling virtually any real function 

to any desired degree of accuracy if the number of 

neurons in the hidden layer is large enough. 

II. FORMULATION OF PROBLEM 

The main objective is to obtain fast parametric models 

for filters that hold many design variables. Let n and  m

represent the number of inputs and outputs, and          

x=[x1, x2,….,xn]
T
 to be n-vector vector containing all the 

input variables of a model,  y=[y1,y2,….,ym]
T

be m- vector 

containing output. For example x represent iris length, iris 

width, cavity length for a filter, and output y represent the

S-parameter of the filter. A conventional neural-network 

model for the problem is defined as y=f(x, w), where f

defines the input- output relationship and w is a neural 

networks internal weight vector. 

If a filter model has many input variables, a massive 

amount of data are required for neural- network model 

training to achieve good accuracy. This massive data 

generation and model training become too expensive and 

impractical. To overcome this limitation, we propose to 

use the decomposition approach to simplify the high- 

dimensional problem into a set of small sub-problems [4]. 

A filter with many design variables is decomposed into 

several sub-strictures, each representing a specific part of 

the filter. The GSM for each sub-stricture is computed by 

mode-matching as

[S11]= ([YL] + [Y1])
-1

([Y1]-[YL])

[S12]=2([YL] + [Y1])
-1

 [M]
 T

 [Y2] 

[S21]= [Y2] [M] [Y1]
-1

([I] + [S11])

                [S22]= [Y2] [M] [Y1]
-1

 [S21] - [I]            (2) 

Yi are diagonal matrices of which the diagonal elements 

are the square roots of the admittances of the modes TEmn 

and TMmn.The elements of the matrices M are the scalar 

products of the transverse fields TE-TE, TM-TE, and TM-

TM respectively on the level of discontinuity. 

Neural network sub-models are then developed to 

represent the sub-structures. Let us assume that a filter is

decomposed into N types of sub-structures. Let  be a 

vector containing the design variables of the ith sub-

structure and  be a vector containing the output 

parameters of the ith sub-structure. A neural network sub-

model for the sub-structure is defined as 

                                                       (3) 

Where fi defines the geometrical to electrical relationship 

of the ith sub-model, wi is a vector containing neural- 

network weight parameters for the ith sub-model, and        

i =1, 2… N. Data generation for sub-models becomes less 

expensive than that for the overall filter model because the 

sub-models contain fewer input variables than the overall 

filter model and the input- output relationships of the sub-

models become simpler than that of the overall filter 

model. 

We need to combine the multiple sub-models to 

reproduce the overall model completely. For this purpose, 

a mechanism equivalent circuit is needed to obtain the 

solution of the overall filter by using the outputs from the 

neural network sub-modes. A big advantage of the 

proposed method is multiple use of sub-model, where 

some of the neural network sub-models may be used 

multiple times as the same junction my appear several 

times in the overall model. In this way, we can obtain all 

the sub-models needed for an overall filter model by 

training only a few neural network sub-models. The 

equivalent circuit model is expressed in term of the 

outputs of the neural network sub-models as 

                           (4)

Let N0 be the number of neural network sub-models 

needed to form the overall filter model, y
c
 is a vector 

containing approximate values of the output of the overall 

filter, f
c
 represent the equivalent circuit function, and 

are electrical parameters obtained from N0

sub-models. 

III. EXEMPLE 

The proposed method was applied to the design of a 

three cavity filter as shown in fig1. The filter model has 

nine variables as inputs, which include four geometrical 

variables: iris width a1 and a2, iris length b1 and b2, cavity 

lengths L1 and L2, and three electrical variables: bandwidth 

BW, center frequency f0, and frequency f. The filter 

outputs are S-parameters S11 and S12. Thus, the input and 

output vector of the filter model is   

                        (5) 

                                                           (6) 

The first step was to segment the filter into four 

regions (Si, i=1… 4) connected through rectangular 

waveguide segments, as can be seen in the fig1. These 

waveguide segments are analytically included in the 

computations. It was assumed for simplicity that there 

were no losses in the filter and that the cavity lengths    

(L1, L2) were always large enough to connect the GSM of 

the irises, considering only the fundamental waveguide 

mode. Using this assumption and bearing in mind the 

geometrical symmetry.   

There is tow types (N=2) of sub-structures: input-

output iris and internal coupling iris, each substructure is 

composed of a rectangular iris and connecting waveguide 

sections. It can be rigorously analyzed since it only 

contains two rectangular-to-rectangular waveguide 

junctions. We will develop two neural network sub-

models; each sub-model contains three input variables: 

width of iris a, length of iris b and center frequency f0. The 

inputs of the sub-models are 
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                                         (7) 

The GSM of the iris can be described with only three 

independent real parameters. The behavior of these 

parameters was modeled over the range 0.9 to 2cm for ai,

1.8 to 2.8 for bi and 38to 40 GHz (frequency) by using 

tow MLPs with two layers of weight and 10 neurons in the 

hidden layer. Each MLP had three inputs, ai, bi and 

frequency f, and one output. We generate 64000 samples, 

which cover a large range of iris width, iris length, and 

center frequency for each sub-model. As an example, the 

module of the parameter S11, at a fixed frequency of 

39GHz, and iris length of 2.524cm, computed using both 

the MLPs neural network and EM method (mode-

matching), are depicted in fig2. GSM of each junction is 

subsequently transformed to equivalent circuit parameters, 

and the output vector of the sub-model are a coupling 

parameter and phase  

                                                                   (8) 

For the internal coupling iris the equivalent circuit is 

an impedance inverter having a shunt reactance Xp and 

series reactance Xs and insertion phase length θ. The 

following equations relate the S-parameter from EM 

simulation to circuit parameters [5]: 

Coupling coefficients and insertion phase length are 

then calculated through. 

Where K is the impedance value of the inverter, f0 and BW

are the filter center frequency and bandwidth, λ and λg are 

the free-space and guided wavelength and M is the 

coupling value. 

We combine the neural-network sub-models and filter 

equivalent-circuit model, as shown in Fig. 3, to obtain the 

approximate S-parameter of the filter. 

The two types of neural-network sub-models are 

concatenated to represent the three-pole filter. The IO iris 

1 produces R1 and IO iris 2 produces R2. The two coupling 

iris models produce M12 and M23. These coupling 

parameters are then used for producing approximate 

parameters of the three-pole filter using the filter 

equivalent-circuit equation of (11) [6]. Note that the 

input–output iris model is used twice and the internal 

coupling iris model is used twice times to represent the 

overall three-pole filter, i.e., N0=4. In other words, the 

four sub-models required in the filter are obtained by 

training only two sub-models. 

In which  , p is the filter 

order, and p=3 in this case, I is a p × p identity matrix, M
c

is the p × p approximate coupling matrix, R
c
 is a p × p

matrix with all entries zero, except [R
c
]11= and 

[R
c
]pp= , and and  are approximate values of the 

filter’s input and output coupling parameters, respectively. 

To the combined neural-network sub-models and filter 

equivalent model and obtain approximate S –parameter by 

sweeping frequency from 36 to 42 GHz with a 0.25-MHz 

step. The center frequency is held constant at 38.5 GHz. 

The model outputs are 

                                  (12) 

The approximate S-parameter of filter with its accurate 

S –parameter are compared in fig 4, showing good 

correlation. Filter geometry: a1=1.932cm, b1=2.524cm, 

a2=1.032cm, b2=1.934cm, L1=4.340cm, L2=4.494cm. 

  

Figure 1. Geometry and segmentation of rectangular 

waveguide three cavities.

Dimensions (in cm) are: A=7.112, B=3.556.a1, b1, a2, 

b2, L1, and L2 are free parameter of system.  
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Figure 2. Variation of iris response against ai at fixed frequency 

and iris length 

Figure 3. Structure for the three cavity waveguide filter, with tow 

neural-network sub-models. 

Figure 4. Comparison of approximate solution with accurate EM 

solution of a three cavity waveguide filter 

IV.  CONCLUSION 

Efficient neural network modeling techniques have been 

presented and applied to microwave filter modeling and 

design. The proposed method based of decomposed the 

filter stricture into sub-structures, which reduces the 

number of variables input of sub-model neural network. 

Each sub-stricture are representing coupling mechanism. 

GSM of each junction is calculated using mode-matching 

method and subsequently transformed to equivalent circuit 

parameters. Neural models are then developed for each of 

the substructures. Equivalent-circuit models are combined 

with neural-network sub-models to produce an 

approximate solution of the overall filter. Good agreement 

is obtained between neural models and EM-based data. 
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