
Implementation and performances evaluation of
turbo code in SystemC

Khemaies GHALI
ISIMG, IResCoMath

BP 122, 6033 Cité El Amel 4, Gabès, TUNISIA.
khemaies.ghali@isimg.rnu.tn

Khaled JELASSI
ENIT L.S.E.-LR11ES15

BP 37, Le Belvédère 1002 Tunis, TUNISIA
khaled.jelassi@enit.rnu.tn

Khadija BELHASSEN
ISIM de Gabès

BP 122, 6033 Cité El Amel 4, Gabès, TUNISIA.
khedija.belhassen@gmail.com

Abstract— As demands for high performance products are

becoming highly urgent due to the technological advancement

stimulating the world, designers are urged to offer more

compact, energy- saving and low-cost systems that would

manage the complexity of the available ones. This would

happen through using different level of abstraction in order to

define and model the system. In this context, SystemC is a

language of modeling system which allows enriching RTL level

through successive refinements. In the present paper, SystemC

-as a system language modeling- is used to implement the turbo

encoder. Accordingly, the current work’s main objective is to

study turbo encoders, to understand the mechanisms of their

functioning and to examine them after being modeled using

SystemC.

I. INTRODUCTION

Embedded systems have become increasingly complex
due to the technological innovations stimulating the world.
The design of an embedded system includes a preliminary
phase of modeling attained via certain tools (languages or
platforms) devised for this purpose. The choice of these tools
depends simultaneously on specific constraints of the system
and on the level of abstraction in which it will be modeled.
The advent of new technologies requires a higher level of
performance in terms of channel coding. In this context, new
principles of channel coding such as Turbo codes as well as
their associated algorithms of decoding are authorized.
Turbo codes offer unequal levels of performances with
regard to the error codes corrector, by approaching most the
limit of Shannon [1].

Apart from the introduction and the conclusion, this
research paper includes a first section defining SystemC, a
second one devised for TLM, and another one for describing
the target application, and a final section for the results.

II. DESIGN APPROACH THROUGH SYSTEMC

A. SystemC Library

SystemC is a library of C++ classes allowing a feasible
modelling of embedded systems including the material
components at the RTL level and clock, the software
components, the architecture (microprocessors, buses,
memories, etc.) and the interfaces. It endows a certain
application with some specification at system level in which
all system abstraction levels are scheduled via the same
language. By having choosing C++, SystemC bases itself on
an approved and known language supported by advanced
tools of development and successful compilers. One of the
features of SystemC is its being a project open-source, thus,
an easily extended project. [2] Indeed, the conception is
slowly refined to add the necessities of hardware and of
time. Using SystemC, a certain system can be modelled
from the system level to the RTL level. This principle is
explained by figure 1.

Proceedings of The first International Conference on Nanoelectronics, Communications and Renewable Energy 2013 292

ICNCRE ’13 ISBN : 978-81-925233-8-5 www.edlib.asdf.res.in

D
o
w
n
lo
a
d
e
d
 f
ro

m
 w

w
w
.e

d
lib

.a
sd

f.
re

s.
in

Figure 1. Design Methodology with SystemC

To represent the hardware and the software, SystemC
defines a library that has to be added to the C ++ language. It
contains material models which are not included in the C ++
library with a simulation kernel which serves to feign the
whole system described in SystemC. The usual data of C ++
are also enriched by other types. The basic elements of a
model in SystemC are either structural elements (modules,
ports) or communication elements (signals, mutex,
hierarchical channels). The figure 2 summarizes the
architecture of this library [3].

Figure 2. SystemC Organisation

The behaviour of a system described in SystemC is
specified by a set of processes. A process can be seen as a
transformation made on input signals to generate output
signals. The notion of signal is thus essential and we can
define it [4] as a sequence of event = {e1, e2,…}. An event
is a couple formed by a label and a value e=(t, v) Є TxV,
with t is the moment in which occurs e; v its value at this
moment.

Figure 3. SystemC process as a transformation of signals

The causality in SystemC is guaranteed by the notion of
delta cycle. That is an appointment in a signal within a
process is not considered at once but rather in a near future.
The distance between this moment and the current moment is
named delta. This virtual notion is present only within
simulator and is not thus visible outside.

B. TLM Library

The TLM library is an extension of SystemC planned to
model systems at high level of abstraction. The main
objective of this library is to allow a fast and effective
modeling of communications (network on chip, shared bus,
etc.) used by the systems on chip [5]. This library is
constituted of a communication interface set and bosses of
conception who allow modeling a system at various levels of
abstraction. The level of abstraction of a TLM model is
generally characterized according to the following two
parameters [6]:

• The granularity of the data which determines the
precision and the size of the data conveyed through a
transaction,

• The temporal precision which defines the temporal
behaviour of a model with regard to the real system.

There are two types of TLM models: TLM-PV (TLM-
Programmer View) and TLM-PVT (TLM-Programmer View
more Timing), proposed by STMICROELECTRONICS [7].
At the PV level a TLM model does not contain temporal
information (software or hardware) of the system which it
models. These models can thus be available very early in a
design stream. Furthermore, this implementation details
abstraction, associated with the low granularity of the
exchanged data, allows obtaining very effective simulation
platforms. These models are adapted to validate perfectly the
feature of the system; however they do not favor the
evaluation of the performances. The generic structure of a
TLM model consists of initiator and target models which are
interconnected via one or several interconnection modules.
An initiator is a module which initiates a transaction towards
a target module. A transaction is equivalent to a call of
distant procedure where an initiator process calls a method of
a target via one or several modules of interconnection. (An
initiator and a target module can be also directly bound).
These modules are bound by initiator ports and target ports
which are in charge of propagating the transaction method
calls. These ports can also convert the calls of methods
according to the modules which they connect.

III. TURBO CODES

The ceaseless increase of the communication system
complexity such as the radio applications returns their design
at low level more difficult. The quality of these systems is
more often estimated by determining the probability of error
of the transmitted symbols [8]. Turbo codes are met

Proceedings of The first International Conference on Nanoelectronics, Communications and Renewable Energy 2013 293

ICNCRE ’13 ISBN : 978-81-925233-8-5 www.edlib.asdf.res.in

D
o
w
n
lo
a
d
e
d
 f
ro

m
 w

w
w
.e

d
lib

.a
sd

f.
re

s.
in

doubtless at present most usually because they get closer
most to the Shannon limit. The principle of the turbo-codes
is described by the figure (5). A turbo-encoder is constituted
by two recursive systematic convolutive encoders (C1 and
C2) separated by an interleaver (π), a block of perforation (P
) and a multiplexer.

Figure 4. Principle of turbo-codes

To avoid the loss of the whole data when the errors are
produced in bursts, we interleave the data before the
transmission so that these errors are isolated in the time. The
permutation increases the minimal Hamming distance of the
concatenated code and she has to guarantee a good exchange
of the extrinsic information between decoders. This
interleaving has to be made in a determinist way to be able to
put back the data in the good order during the decoding; it is
built on the basis of a regular permutation. Various types of
interleaving are specified in [9]. Both blocks C1 and C2 are
convolutive encoders. Each of the output is equal to the
convolution product (where from the expression
"convolutive") between the binary suite presented to the
entry of the encoder and the response of the same encoder
defined by its generative sequences [8]. For the example of
the figure 5, these sequences are given by:

{ } 0 1 20,1 , [, ,]i i i ii g g g g" Î = (1)

with

{ } { }
2

0

0,1 , 0,1i

k ij k j ij

j

i c g d et g-
=

" Î = Îå (2)

Figure 5. Example of systematic convolutive encoder

A convolutive code is said to be systematic if the initial
word of information is directly got back in the word of
received code.

IV. TURBO ENCODER IMPLEMENTATION

A. SystemC Model

Our system consists -as illustrated in figure 4- of a
generator, two convolutives encoders "C1" and "C2" which
are separated by an interleaving module "π" and followed by
a perforation module "P", and finally by a multiplexing
module. The multiplexer makes no treatment that if both data
coming from generator and from perforator are presents.
Also for the perforator, it supplies the information that if
both data coming from "C1" and "C2" are presents. Our
design is translated to five modules which are the generator,
the convolutive encoder, the interleaver, the perforator and
the multiplexer. As an example we can give the specification
of convolutive encoder module. This module is constituted
by four input ports (data_in, data_valid, perf_req and clk),
three outputs ports (perf_valid, data_out and data_req) and a
process type SC_CTHREAD: "coder".

Figure 6. Coder module

The process serves to make the convolutive coding of the
data coming from generator "data_in". Ports "data_req" and
"data_valid" are the points of synchronization with the
generator. If the encoder is at need of a data it puts "1" on
"data_req". The ports "perf_req" and "perf_valid" are the
points of synchronization with the perforator. If a new data is
coded "perf_valid" pass in "1". The port "data_out"
represents the coded information. The global system is
designed by interconnecting the different modules already
implemented through signals. The global architecture of the
system is given by the figure 7.

Figure 7. Turbo encoder at system level

B. Results verification

1) Trace file generation
GTKWave[10] is an electronic waveform viewer built

using GTK+ toolkit, which reads VCD (Value Change

Proceedings of The first International Conference on Nanoelectronics, Communications and Renewable Energy 2013 294

ICNCRE ’13 ISBN : 978-81-925233-8-5 www.edlib.asdf.res.in

D
o
w
n
lo
a
d
e
d
 f
ro

m
 w

w
w
.e

d
lib

.a
sd

f.
re

s.
in

Dump file) and displays waveforms. A VCD[11] file is an
ASCII file that contains header information, variable
definitions, and the value changes for all variables specified
in the task calls. Such a file is typically generated using
simulation tools. It lets you see state variables vs. time and
the transition between different values. The signals
interchanged in our system, represented by GTKWave, are
given by the following figure:

Figure 8. System data flow circulating on the system

Figure 7 shows that different modules are well executed
in the planned order. Let us take the cycle of the clock where
the generator generates the first vector as the reference cycle
(1). In the following cycle, the first encoder and the
interleaver generate their outputs (2). In the 3rd cycle, the
second encoder generates its output (3), whereas in the 4th
cycle, the perforator generates its output (4). Finally, in the
5th cycle, the multiplexer generates its output (5).

2) Exchanged signals verification
To make sure of correct behaviour of each module and of

their interconnection we are going to take this vector and to
make our encoder for the hand. The used interleaver is the
one right left / high bottom. Thus, we are going to fill in the
matrix of dimension 4x2=8 by our sequence of 8 bits in the
normal order and we are going to read it from the right to the
left and from the top downward. The sequence $29 is written
in the matrix as follows:

Figure 9. Principles of used interleaver

What gives 0110.0001 = $61 as interleaved data,
0011.0100=$34 as coded systematic entry and 0100.1100 =
$4C as interleaved coded data. We thus find the same results
represented by GTKWaves. Both sequences will be then
perfored. We consider taking the first bit of strong weight of
vector coming from first encoder. The perforator gives $64
as performed data. The multiplexing of two sequences input
and perfored data gives 0001.1100.1001.0010 = $1C92 =
data.

3) System inconvenients
 The major inconvenience of our system shows itself

when the flow of the source is brought up with regard to the
system which risk to lose data. The figure 10 shows that at
the time the generator generated 13 packages, the turbo
encoder produced, only, 2 coded packages. There are thus
data which are lost.

Figure 10. Data flow for 1 paquet/cycle source

To overcome this problem, it is necessary to think of a
means allowing getting back the data even if flows are not
equal. We propose the use of FIFO to adapt the flows of
modules.

C. Use of FIFOs

The use of FIFOs allows synchronizing modules without
need of control signals. In SystemC, such a channel is called
"sc_fifo". To refine our modelling, we have to calculate the
run time of different modules as well as the time put in the
communication. To make it we use functions of operating
system Microsoft Windows [12]. The following figure
represents the increase of run time according to package size.

Figure 11. Execution time variation

Figure 11 shows that the module multiplexer sets more
time to run. If the target processor possesses even
characteristic as the simulation processor and if we are
obliged (with the aim of reducing the run time) to choose the
implementation of some modules in hardware, it is clear that
the multiplexer is the first one. Up to now, we are able to
model the features of the various modules but the
communications inter-modules remain still abstracted. The
TLM library allows modelling the data transfer as well as the
communications protocols.

V. USE OF TLM

A. The global system

The TLM library is based on the architecture initiator /
target. As illustrated in the figure 12, the generic structure of
our TLM model consists of initiators and targets modules

Proceedings of The first International Conference on Nanoelectronics, Communications and Renewable Energy 2013 295

ICNCRE ’13 ISBN : 978-81-925233-8-5 www.edlib.asdf.res.in

D
o
w
n
lo
a
d
e
d
 f
ro

m
 w

w
w
.e

d
lib

.a
sd

f.
re

s.
in

that are interconnected via the bus of communication. An
initiator is a module in which a process initiates transaction
towards a target module. Our system consists of twelve
initiators, twelve targets and a bus of communication serving
to interconnect them. The communication initiator / target is
made through transactions. The modelling of our system in
TLM level is given by the following figure:

Figure 12. The system at TLM level

To preserve the data, we subdivided the range of address
memory into 5 blocks. The first one is the working range of
generator that is the data generated by the generator are
going to be stored in this zone. The first encoder, the
interleaver and the multiplexer are going to read the
systematic data of this zone. Once these data are coded by
the first encoder, they are written on the second zone. The
interlaeaved data, which are registered in the third zone will
be read by the second encoder and written on the fourth
zone. The perforator is going to take in alternation one of
two coded data that is it is going to read these data from the
second and fourth zone and to write the result on the fifth
zone.

B. Logic of communications

We used the library "reporting.h" in all files of
implementation. Every exchanged transaction between
modules is reported. It is worth noting that we have to make
sure of the synchronization between the various modules,
that is, an address should not be read before the
corresponding datum is ready for use. For example, before
reading a datum on behalf of the second encoder it is
necessary to make sure that this datum is interleaved.
Regrettably modules initially designed are not synchronized.
So that the exchanged data are correct we use the primitive
“wait” and we increase the period so much that the execution
is not in the wished order. This is going to increase number
of clock cycle. The generator is scheduled to generate 32
parquets. The following table resumes the flow of several
modules:

TABLE I. FLOW OF DIFFERENT MODULES (TRANSACTION/CYCLE)

The second column represents identifier of modules. For
every module we give a unique identifier. A module is
known by the bus through this number. The period of
simulation is the difference between the end and the
beginning of simulation of each module.

VI. CONCLUSION

Starting from an algorithmic description of turbo
encoder, we managed to implement it in SystemC while
taking into account the synchronization between modules
and order of their execution. The lower are the levels of
abstraction, the more sophisticated are the lines of the codes
and the more increased the number of modules is going to
be. The media of communication (abstract) is replaced by a
simple bus which interconnects the different modules. The
general objective is to develop a turbo encoder on the same
chip by means of an innovative stream of conception.

This work allowed us to implement the system at TLM
level based on the architecture target initiator through a
communication media.

BIBLIOGRAPHY

[1] [1] F.Rouissi, F.Tlili, L.Ben Hadj Slama and A.Ghazel, “Improved
HomePlug 1.0 FEC with SOVA Algorithm and Erasure Decoding”,
IJCSNS International Journal of Computer Science and Network
Security, VOL.10 No.2, February 2010.

[2] [2] OSCI Language Working Group, “SystemC 2.0 User guide
Update for SystemC 2.0.1”.

[3] [3] N.Blanc & D.Kroening, “Race analysis for systemc using model
checking”, ACM Transactions on Design Automation of Electronic
Systems (TODAES) , Volume 15 Issue 3, May 2010.

[4] [4] E.Reccobene & al, “SystemC/C-based model-driven design for
embedded systems, ACM Transactions on Embedded Computing
Systems (TECS), Volume 8 Issue 4, July 2009.

[5] [5] C.Koch-Hofer, « Modélisation, Validation et Présynthèse de
Circuits Asynchrones en SystemC », thèse, Institut Polytechnique de
Grenoble, 26 Mars 2009.

[6] [6] A.Mello.; I.Maia.; A.Greiner.; F.Pecheux “Parallel simulation
of systemC TLM 2.0 compliant MPSoC on SMP workstations”,
Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2010.

[7] [7] L.Ferro “Vérification de propriétés logico-temporelles de
spécifications SystemC TLM” these au sein de laboratoire TIMA
université de GRENOBLE, Juillet 2011.

[8] [8] J.Boutros; I.Guillén; A.Fàbregas.; E.Biglieri.; G.Zémor;, “
Low-Density Parity-Check Codes for Nonergodic Block-Fading
Channels, Information Theory, IEEE Transactions on , September
2010.

[9] [9] R.Asghar & D.Li ,” Low Complexity Multi Mode Interleaver
Core for WiMAX with Support for Convolutional Interleaving”,
International Journal of Electronics, Communications and Computer
Engineering 1:1 2009.

[10] [10] http://gtkwave.sourceforge.net/

[11] S.Penolazzi, I.Sander, A.Hemani” Predicting energy and performance
overhead of Real-Time Operating Systems, Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2010.

Proceedings of The first International Conference on Nanoelectronics, Communications and Renewable Energy 2013 296

ICNCRE ’13 ISBN : 978-81-925233-8-5 www.edlib.asdf.res.in

D
o
w
n
lo
a
d
e
d
 f
ro

m
 w

w
w
.e

d
lib

.a
sd

f.
re

s.
in

