
 

Abstract—The control of the quadrotor helicopter includes 

nonlinearities, uncertainties and external perturbations that 

should be considered in the design of control laws. This paper 

presents a control strategy for an underactuated six degrees of 

freedom (6 DOF) quadorotor helicopter, based on the sliding 

mode control (SMC). The main purpose of this work is to 

proposed a non linear observer based on extended kalman 

filter (EKF) to estimate the unmeasured states. Finally 

simulation results are included to indicate the quadrotor UAV 

with the proposed controller ensure a good tracking of a 

desired trajectory and remain robust to the external 

disturbances. 

I. INTRODUCTION 

Autonomous Unmanned Air vehicles (UAV) are 
increasingly popular platforms, due to their use in military 
applications, traffic surveillance, environment exploration, 
structure inspection, mapping and aerial cinematography, in 
which risks to pilots are often high. Rotorcraft has an 
evident advantage over fixed-wing aircraft for various 
applications because of their vertical landing/take-off 
capability and payload. Among the rotorcraft, quadrotor 
helicopters can usually afford a larger payload than 
conventional helicopters due its four rotors. Moreover, small 
quadrotor helicopters possess a great maneuverability and 
are potentially simpler to manufacture. For these advantages, 
quadrotor helicopters have received much interest in UAV 
research [1].   

               The quadrotor is an underactuated system with six 
outputs and four inputs, and the states are highly coupled, 
Many efforts have been made to control quadrotor helicopter 
and some strategies have been developed to solve the path 
following problems for this type of system, First of this 
works the quadrotor has been controlled  
in 3 DOF such as the author in [2] take into account the 
gyroscopic effects and show that the classical model 
independent PD  controller can stabilize asymptotically the 
attitude of the quadrotor aircraft. Moreover, they used a new 
Lyapunov function, In this paper we are interested 
principally in a dynamical model of the quadrotor Then, we 
present a control technique based on the development and  
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the synthesis of a stabilizing control laws by sliding mode 
approach ensuring locally asymptotic stability and desired 
tracking trajectories expressed in term of the centre of mass 
coordinates along (X, Y, Z) axis and yaw angle. Which leads  
to an exponentially stabilizing controller based upon the 
PD2 and the compensation of coriolis and gyroscopic 
torques. While in [3] the authors develop a PID controller in 
order to stabilize altitude.  In [4] a PID controller and a LQ 
controller were proposed to stabilize the  attitude. The PID 
controller showed the ability to control the attitude in the 
presence of minor perturbation and the LQ controller 
provided average results. In [5] the authors the combination 
of the backstepping technique and a nonlinear robust PI 
controller. The integral action gain is nonlinear and based on 
a switching function that ensures a robust behaviour for the 
overall control law.  In [6] they proposed the Backstepping 
Fuzzy Logic controller (BFL) and Backstepping Least Mean 
Square controller (BLMS) as new approaches to control the 
attitude stabilization of quadrotor UAV.  And there are many 
works which control the quadrotor in 6 DOF, First of  all, 
several backstepping and feedback linearization controllers 
have been developed. In [7] present the nonlinear control 
techniques applied to an autonomous micro helicopter type 
Quadrotor using the backstepping approach, In [8] presented 
the Backstepping Approach for Controlling a quadrotor 
Using Lagrange Form Dynamics In addition, two neural 
networks are introduced to estimate the aerodynamic 
components, one for aerodynamic forces and one for 
aerodynamic moments. In [9] a mixed robust feedback 
linearization with linear  �GH  controller is applied to a 
nonlinear quadrotor unmanned aerial vehicle. In [10] the 
control strategy includes feedback linearization coupled with 
a PD controller for the translational subsystem and a 
backstepping-based PID nonlinear controller for the 
rotational subsystem of the quadrotor. And there is another 
non linear control technique applied to the quadrotor such as 
in [11] applied a robust adaptive-fuzzy control. This 
controller showed a good performance against sinusoidal 
wind disturbance. In [12] presented the comparison between 
a based model method and a fuzzy inference system to 
controlling a drone.   

                The sliding mode control has been applied 
extensively to control quadrotors. The advantage of this 
approach is its insensitivity of the model errors, parametric 
uncertainties, ability to globally stabilize the system and 
other disturbances [13]. In [14] author used the sliding mode 
approach to control a class of underactuated systems 
(quadrotor), In [15] the authors presents a continuous sliding 
mode control method based on feedback linearization 
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applied to a Quadrotor UAV, In [7, 16] These papers present 
a new controller based on backstepping and sliding mode 
techniques for miniature quadrotor helicopter, In [1] presents 
two types of nonlinear controllers for an autonomous 
quadrotor helicopter. The first type is a feedback 
linearization controller that involves high-order derivative 
terms and turns out to be quite sensitive to sensor noise as 
well as modelling uncertainty. The second type involves a 
new approach to an adaptive sliding mode controller using 
input augmentation in order to account for the underactuated 
property of the helicopter.   
  

                In this work, we present a control technique based 
on the development and the synthesis of a control algorithm 
based upon sliding mode to ensure the locally asymptotic 
stability and the desired tracking trajectories expressed in 
terms of the centre of mass coordinates along (X, Y, Z) axis 
and yaw angle, while the desired roll and the pitch angles are 
deduced unlike to [8].   
                 

               However, the extended Kalman filter is considered 
to be the best solution in order to estimate unmeasured states 
and the effects of additive uncertainties. Finally all the 
control laws synthesized are highlighted by simulations 
which gave results considered to be satisfactory. 

II. QUADROTOR DYNAMICS MODELING

A quadrotor helicopter is a highly nonlinear, multivariable, 
strongly coupled, and underactuated system (six degrees of 
freedom (6 DOF) with only 4 actuators). The main forces 
and moments acting on the quadrotor are produced by 
propellers. The generalized coordinates for the rotorcraft are  

( ) 6,,,,, ℜ∈= ϕθψzyxq                                        (1) 

Where ( )zyx ,,  denote the position of the centre of mass of 

the quadrotor relative to the inertial frame, and ( )ϕθψ ,, are 

the three Euler angles yaw pitch and roll angles and 
represent the orientation of the rotorcraft (Fig.1).Therefore, 
the dynamic model partitions naturally into translational and 
rotational coordinates presented in [17] by the following 
equations.   

            ( )

( )��

�
�
�

ℜ∈=

ℜ∈=

3
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,,

θψϕη

ζ zyx
                                                 

(2)                              
                            

Figure 1. The quadrotor in an inertial frame
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Where  
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Where l is the distance from the motors to the centre of 
gravity and �Mi is the couple produced by motor Mi. Since 
the Lagrangian contains no cross-terms in the kinetic energy 

combining ζ� and η�  (eq 6), the Euler–Lagrange equation can 

be partitioned into the dynamics for the � coordinates and 
the � dynamics. we obtains 

( ) τηηηη +−= ���� ,CJ                                              (8)                                                                                                           

In order to simplify let us propose a change of the input 
variables: 
                       

( ) τηηητ ~, JC +−= ��
                                             (9) 

Where 
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are the new inputs. Then 

τη ~=��                                           (11) 

Where x and y are the coordinates in the horizontal plane, 
and z is the vertical position (Fig.1). � is the yaw angle 
around the z-axis, � is the pitch angle around the (new) y-
axis, and � is the roll angle around the (new) x-axis. 
The control inputs θψ ττ ~,~,u and ϕτ~  are the total thrust or 

collective input (directed out from the bottom of the aircraft) 
and the new angular moments (yawing moment, pitching 
moment and rolling moment). The different physical 
parameters of the quadrotor are presented in Table.1 [17] 
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TABLE I.  PHYSICAL PARAMETERS OF THE QUADROTOR 

III. STRATEGY OF THE QUADROTOR

The Quadrotor model (3) can be rewritten in state space 

where ( ) ( )UXgxfX ,+=�  and T
xxX ],...,[ 121= is the state 

vector of the system such as: 

],,,,,,,,,,,[ ϕϕθθψψ ������ zzyyxxX =                       (12)                                                                                           

From (3) and (12) we obtain the following state 
representation:  
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To achieve a robust path following for the 
quadrotor helicopter, two techniques, capable to control the 
helicopter in presence of sustained external disturbances, 
parametric uncertainties and unmodelled dynamics are 
combined. The proposed control strategy is based on the 
decentralized structure of the quadrotor helicopter system, 
which is composed of the dynamic Equation (1). The overall 
scheme of the control strategy is depicted in Fig. 2. The 
translational motion control is performed in two stages. In 
the first one, the helicopter height z  is controlled and the 
total thrust 1U is the manipulated signal. In the second stage, 

the reference of pitch and roll angles ( dθ and dϕ , 

respectively) are generated through the two virtual inputs xu

and yu , computed to follow the desired xy movement. 

Finally the rotation controller is used to stabilize the 
quadrotor under near quasi-stationary conditions with 
control inputs ψτ , θτ , ϕτ . 

IV. EXTENTED KALMAN FILTER OBSERVER

            The Kalman filter was developed by R.E. Kalman in 
1960. Due to advances in the development of digital 
computing, the Kalman filter is a subject of extensive 
research and application. Kalman filtering has been applied 
in the areas of aerospace, navigation, manufacturing, and 
many others.  

             The Kalman filter provides a means for inferring 
missing information from indirect (and noisy) 
measurements. It provides the optimal (minimum variance) 
state estimate when the dynamic system is linear and the 
statistical characteristics of the various noise elements are 
know The EKF is an optimal recursive estimation algorithm 
based on the least-square sense for estimating the states of 
dynamic nonlinear systems. That is, it is an optimal 
estimator for computing the conditional mean and 
covariance of the probability distribution of the state of a 
nonlinear stochastic system with uncorrelated Gaussian 
process and measurement noise.  

             Since the state models are nonlinear, the EKF can be 
applied to estimate state variables. The Nonlinear discrete 
models with white noise are given as follows: 

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )�

�
�

+=

+=+

kvkxhky

kwkukxfkx ,1
                                 (15)                                                                                                        

w and v are the system and measurement noise.  

For linearization process in the model, the partial derivative 
is introduced and discrete state models are: 

( ) ( ) ( )( )
( ) ( ) ( )kkxkx

T kx

kukxf
kF

/

,

�
=

∂

∂
=                                (16)                                                                                                          

( ) ( )( )
( ) ( ) ( )kkxkx

T kx

kxh
kH

/
�

=
∂

∂
=                                      (17)                     

Estimation of an error covariance matrix 

( ) ( ) ( ) ( )1
T

P k F k P k F k Q
− + = +                                (18) 

Computation of a Kalman filter gain 

    ( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1
TTk k P k H k H k P k H k R

−
− −� 
+ = + + +

� �
      (19) 

Update of a error covariance matrix 

( ) ( ) ( )( ) ( )1 1 1P k I K k H k P k−+ = − + +                       (20) 

State estimation 

( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ1 1 1 1X k X k K k y k h X k� 
+ = + + + − +
� �

          (21) 

im Motor weight 0.10 kg

Battery weight 0.60 kg

m Total weight of the quadrotor  0.52 kg  
l Distance from motors to the 

centre of gravity  
0.205 m

g Gravitational acceleration   9.81 2/ sm

bm
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Where:  

P-(k+1) is a priori error covariance matrix   
Q and R respectively and are independent from the system 
state [4]. 

V. DISCRETIZATION OF THE QUADROTOR MODEL

The corresponding discrete time model is given by:  

( ) ( ) ( )( )
( ) ( )( )

1 ,x k f x k u k

y k h x k

� + =�
�

=��
                                      (22)                        

            We are assuming that the sampling time TS is very 
small compared to the system dynamics. The discrete model 
of the quadrotor is given as: 
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The matrices linearization F and H, we can linearize the 
system in every moment of operation. They are given as 
follows 
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VI. SLIDING MODE CONTROL OF THE QUADROTOR

                            Denote X̂  the estimate of state vector (12) with  

��
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To synthesize a stabilizing control law by sliding 

mode, the necessary sliding condition ( )0<SS � must be 

verified; so the synthesized stabilizing control laws are as 
follows: 
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Such as ( )iik λ, 2+∈ R

Proof  

The tracking errors are defined by: 
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With idx  is the desired value   

The sliding surfaces are chosen as follows: 
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The Lyapunov function is defined by: 

( ) 2

2

1
xx SSV =

  

if ( )( )0xV S <�  then ( )0SS <� , we can say that the 

necessary condition has verified  and the stability of 
Lyapunov is guaranteed 

2 1 1xS e eλ= +                                                              (32)          

The chosen law for the attractive surface is the time 

derivative of (49) satisfying ( )0SS <� : 

(31) 

(26) 

(24) 

(25) 
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Than:  
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The same steps are followed to extract θψ ττ ~,~,,uu y and ϕτ~   

The desired roll and pitch angles in terms of errors between 
actual and desired speeds are, thus, separately given by:  
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The framework of the quadrotor control system 
with the proposed controller based EKF observer is 
presented in Fig.2. 

Figure 2. Synoptic scheme of the proposed controller 

VII. SIMULATION RESULTS

To show the performance of the proposed approach, 
the corresponding algorithm is implemented in simulation 
for the position and attitude dynamic of the quadrotor UAV. 
The results obtained for the attitude and position 
stabilization of the mini aircraft are given in the Fig.3, Fig.5. 
One can see that, the controller based EKF observer ensures 
a good tracking, Fig.4, Fig.6 shows that the estimation errors 
are low. 
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Figure 6. Control response of a quadrotor helicopter 

Figure 7. Estimation errors according to 

, , , , ,ψ ψ θ θ φ φ� 
� �
� �

Figure 8. Global trajectory of the quadrotor 

VIII. CONCLUSION

       In this paper, we presented stabilizing control laws 
synthesis by sliding mode technique. First, a dynamic model 
of the quadrotor is presented taking into account the different 
physics phenomena imposed to the system motions. The 
developed control laws allowed the tracking of various 
desired trajectories expressed in term of the center of mass 
coordinates of the system. A nonlinear observer (EKF) is 
introduced to alleviate the constraint of states measurement. 
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