Effects of higher order-dispersion on dissipative structures in a photonic crystal fiber resonator

L.BAHLOUL, L.CHERBI, H.HARIZ Laboratory of Instrumentation, U S T H B, Algies, Alegria. Lyes_86@live.fr, cherbi_lynda@hotmail.com haffidoff@gmail.com

Abstract—we describe in this work the influence of higherorder of dispersion on dissipative structures generated in a photonic crystal fiber cavity. Numerical simulations have shown that the term B_4 influences the frequency of the signal while the term B_3 introduces a phase shift which results in a temporal constant velocity proportional to this term without changing the frequency.

Keywords-component; resonant cavity; Photonic Cristal fiber 'PCF'; modulation instability, nonlinear effects.

I. INTRODUCTION

Photonic crystal fibers (PCFs) can be defined as being 2-dimensional photonic crystal consisting of periodic setting air holes in the cladding of the fiber traversing along the axis of propagation. Such structures can have a reflectivity that varies as a function of the wavelength. [1]

There are two categories of PCF fibes determined using the propagation of light in the fiber. The total internal reflections PCF and the bandar PCF.

The PCF have several characte tics that allow their use in many applications ing these characteristics dispersion which is a serious the control of chromatic problem in standard rs, also we can design PCF with a high nonlik earty, that's why the use of photonic has seen a significant rise due to all y can offer compared to standard ones, example control the wavelength of zero ion and get more interesting values than those found with standard fiber, which allow exploring the higher order dispersion.

We will therefore use a PCF fiber as a medium to design a resonant cavity which has been the subject of several studies of researches [2,3,4,5].

M.TLIDI
Faculté des sciences U L B
Brucelles, Belgium.
mtlidi@ulb.ac.be

The advantage of working in these paraties is to exploit the existence modulation instal fility [2, 3,4] "IM" which is defined as a balance between chromatic dispersion and nonlinear effects (Kerr effect) to generate specific signals as dissipative structures that are modulated signals or localized structures—that are the result of interaction between the modulated solution and the homogeneous one. These last structures are also called localized gaving solitons.

These squals can be used in several applications like the referation of ultra-high bit rate pulses for data transmitting or in temporal storing of data with a high speed.

II. DESCRIPTION OF THE PCF CAVITY

Our system consists of a section of PCF fiber looped to itself using an optical coupler, which is characterized by a transmission coefficient T and a reflection one R.

The cavity is lunched continuously by optical power CW.

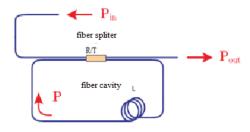


Figure 1: schematic description of the PCF resonant cavity

After each cavity round, there will be a portion of the optical power out of the cavity and the other part will be superposed with the Continuous power at the input.

ICNCRE '13 ISBN: 978-81-925233-8-5 www.edlib.asdf.res.in

III. MATHEMATICAL MODEL

The equation that governs the propagation of a light wave in the optical fiber is a nonlinear Schrodinger equation (NLS) which follows [7]:

$$\frac{\partial E}{\partial z} + j \frac{\beta_2}{2} \frac{\partial^2 E}{\partial t^2} - \frac{\beta_3}{6} \frac{\partial^3 E}{\partial t^3} - j \frac{\beta_4}{2} \frac{\partial^4 E}{\partial t^4} = j \mathcal{V} |A|^2 E - \frac{\alpha}{2}$$
 (1)

Where: E is the pulse envelope, (B_2, B_3, B_4) are dispersions of order 2, 3 and 4, V: The coefficient of nonlinearity and α is the linear attenuation.

The equation (1) is then submitted to the boundary conditions of the cavity [2, 3] which means that the intracavity field "E" must vary little from one round of cavity to another and the phase shift between it and the CW pump should be as small as possible to ensure the resonance of our system.

These conditions allow us to perform an average over the intracavity field and subsequently establish the equation that governs the propagation inside the cavity under the following form [2, 3, 6]

$$\frac{\partial E}{\partial t} = S - (1 + i\Delta)E + i|E|^2 E - iB_2 \frac{\partial^2 E}{\partial \tau^2} + B_3 \frac{\partial^3 E}{\partial \tau^3} + iB_4 \frac{\partial^4 E}{\partial \tau^4}$$
(2)

Where: S is the input power, E is the envelope of the intracavity field, the detuning Δ is the parameter which characterizes the phase shift between the pump and Δ , t is the time of a cavity round and τ is the time in a referential that depends on the group valouity of the

The stationary and homogeneous solution Es of (2) satisfies:

$$S = (1 + iA)E_s O i|E_s|^2 E_s$$
 (3)

We now find the thresholds of onset of modulation instability (MP) of do this we disturb the homogeneous solution F_s with a disturbance that has the following form $a = v r (\lambda t - i\Omega \tau)$, we have then:

$$E = E_S + a \tag{4}$$

After that we inject (4) in (2) and we perform a linear stability analysis on our system. [2, 3, 8].

This study consists in taking the linear part of (2) and look for power thresholds for which the modulation instability appears and the frequency corresponding to each threshold.

The result of this study has shown the existence of two instability thresholds:

The first threshold is $I_{1m} = |E_{1m}|^2 = 1$, at this level we noticed the appearance of two frequencies at the same time, and their expressions are as follows [2]:

$$\Omega^2 = \frac{-B_2 \pm \sqrt{B_2^2 + 4(\Delta - 2)B_4}}{2B_A} \tag{5}$$

The second threshold is expressed as:

$$|E_{2m}|^2 = (2\Delta_{\text{eff}+\sqrt{\Delta_{\text{eff}-3}}})/3$$
 (6)

With: $\Delta_{\text{eff}} = \frac{{B_2}^2}{4B_4} + \Delta$.

At this level we find a sheet frequency, and it is expressed as follows:

$$\Omega^2 = \frac{-B_2}{B_4} \tag{7}$$

These results are very important because they give us a precise p formation about the frequency of the signals which can be generated inside the cavity and also allow us. know which parameters of the fiber that influence these frequencies, we note that the term B_3 doesn't influence the frequency of these signals.

However, the linear stability analysis shows that the term B_3 introduces a phase noted K_c , which is expressed as:

$$K_c = B_3 \Omega^3 \tag{8}$$

This phase will induce a temporal drift of the wave between a round of cavity and another; it is interpreted as constant velocity which is calculated as follows:

$$V_l = \frac{d K_c}{d\Omega} = \frac{dB_3 \Omega^3}{d\Omega} = 3B_3 \Omega^2 \tag{9}$$

IV. EFFECTS OF B_3 AND B_4 ON CAVITY SIGNALS

A.
$$B_3 = 0$$

In this section we numerically integrate (2) near the first instability threshold while forcing the system to generate a single frequency instead of two as predicted by the preceding calculation, this is can be made by choosing the parameters of the fiber which ensure the following condition:

ICNCRE '13 ISBN: 978-81-925233-8-5 www.edlib.asdf.res.in

$$B_2^2 + 4(\Delta - 2)B_4 = 0 \tag{10}$$

The expression of the frequency becomes:

$$\Omega^2 = \frac{-B_2}{2B_4} \tag{11}$$

To ensure that Modulation Instability appears, we have as a first step to disturb the homogeneous solution Es as shown in the following figure:

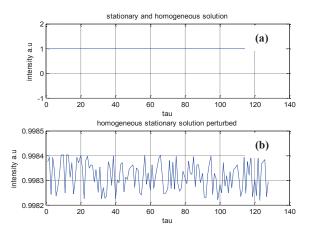


Figure 2: (a) homogeneous stationary solution (b) homogeneous stationary solution perturbed for the following parameters:

$$\Delta$$
=1.3, S=1.129, B_2 =-0.75, B_3 =0, B_4 =0.2.

We see clearly from the "Fig. 2" that the homogeneous solution has experienced the phenomena of not lation instability, this is the reason of the appearance of a totally disturbed signal, we also note that the term B_3 was ignored so we can conclude in this case that the MI is a balance between the second and the forth order of dispersion on one side and the porlinear effects (Kerr effect) on other side as predicted by analytical calculation.

After that, the perturbed signal will travel inside the cavity by doing several rounds which will overlap with the pump signal at the input of the cavity for each round, the will increase the non-linear effects and permits to obtain a dissipative structure as shown in the following figure:

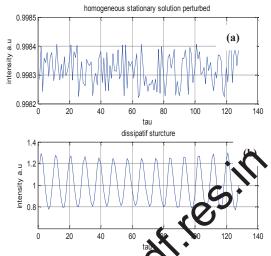


Figure 3: (a) perturbed homogeneous and stationary solution

(b): dissipative structure (modified solution) for the same parameters of igure 2.

So we can define the dissipative structures as the result of the current of the signal which was disturbed by the phenomena of modulation instability. This saturation is due to the accumulation of nonlinear effects after each round cavity.

B. $B_3 \neq 0$

We now repeat the previous simulation except that this time we will consider the influence of the term B_3 [3], we noticed that for the same parameters we find the same modulated signal but with a phase shift between two successive rounds of cavity as shown in this figure:

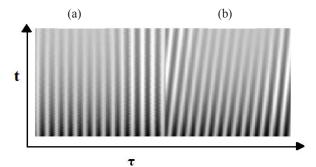


Figure 4: 3D map that shows the time evolution of the modulated intracavity solution with the following parameters:

$$\Delta$$
=1.3, S=1.129; B_2 =-0.75, B_4 = 0.2

- (a) Stationary solution $B_3 = 0$.
- (b) Moving solution $B_3 = 0.25$.

ICNCRE '13 ISBN: 978-81-925233-8-5 www.edlib.asdf.res.in

"Fig.4" clearly shows the difference between the intracavity signal with or without the effect of B_3 .

We first noticed that the two figures have exactly the same frequency with the same amplitude in the presence or absence of B_3 , which confirms the predicted results in the analytical calculation where it is noted that B_3 does not influence the frequency of generated signal.

However, we see that in presence of B_3 , it introduces a phase after each cavity round that gives a constant velocity to the wave during its evolution. The numerical calculation of the velocity is derived from the determination of the slope of the curve presented in Fig"4.b"

$$V \cong \frac{11}{39} = 0.282$$

However if we calculate the velocity with the analytical method (9) we find that $V_l = 1.4$.

Into and a second to the plant occurs when we are second the total velocity of the wave which seconds the sum of both.

To find the expression of this velocity, it is necessary to make a nonlinear calculation which will be the subject of the future papers.

V. CONCLUSION

Ve arrived in this second to the subject of the future papers.

cavity a train of pulses of ultra-high it rate with a stable amplitude and frequency by ensuring the condition of onset of modulation

Besides, by using fiber we were able to introduce the effe higher-order dispersion, we e term of B_4 influenced the frequency ignal while the term B_3 introduced a shift after each cavity round, this phase as a wave velocity that depends on B_3 .

REFERENCES

- [1] Frederica Poli, Annamaria Cucinotta, Stefano Selleri. Photonic Cristal Fibers, proprieties and applications, Springer series in materials science 102.
- [2] M. Tlidi et al., Opt. Lett. 32, 662 (2007).

- [3] François Leo, Étude des structures dissipatives dans les cavités optiques passives, Théorie et expérience, doctorat en physique, Université libre de Bruxelles 2010.
- [4] M. Haelterman I, S. Trillo and S. Wabnitz, Dissipative modulation instability in a nonlinear dispersive ring Cavity, Optics Communications 91 (1992) 401-407 North-Holland.
- [5] S. Coen and M. Haelterman Modulational Instability Induced by Cavity Boundary Conditions in a Normally Dispersive Optical Fiber.
- [6]. L. A. Lugiato and R. Lefever, Phys. P. 2209 (1987).
- [7] Govind.P.Agrawell, Non Life Fiber optics, Academic press, (third edition) (200
- [8] Stéphane Coen, Passiv Nonlinear Optical Fiber Resonators, Fundamental Applications, doctorat en physique, Université les de Bruxelles 2000.

ICNCRE '13 ISBN: 978-81-925233-8-5 www.edlib.asdf.res.in