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Abstract—we describe in this work the influence of higher-

order of dispersion on dissipative structures generated in a 

photonic crystal fiber cavity. Numerical simulations have 

shown that the term  influences the frequency of the 

signal while the term  introduces a phase shift which 

results in a temporal constant velocity proportional to this 

term without changing the frequency. 
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I. INTRODUCTION 

Photonic crystal fibers (PCFs) can be defined as being 
2-dimensional photonic crystal consisting of periodic 
setting air holes in the cladding of the fiber traversing 
along the axis of propagation. Such structures can have 
a reflectivity that varies as a function of the 
wavelength.

There are two categories of PCF fibers determined 
using the propagation of light in the fiber: The total 
internal reflections PCF and the bandgap PCF. 

The PCF have several characteristics that allow their 
use in many applications, among these characteristics 
the control of chromatic dispersion which is a serious 
problem in standard fibers, also we can design PCF 
with a high nonlinearity, that’s why the use of photonic 
crystal fiber (PCF) has seen a significant rise due to all 
benefits that they can offer compared to standard ones, 
we can for example control the wavelength of zero 
dispersion and get more interesting values than those 
found with standard fiber, which allow exploring the 
higher order dispersion.  

We will therefore use a PCF fiber as a medium to 
design a resonant cavity which has been the subject of 
several studies of researches . 
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The advantage of working in these cavities is to exploit 
the existence modulation instability [2, 3,4] "IM" which 
is defined as a balance between chromatic dispersion 
and nonlinear effects (Kerr effect)  to generate specific 
signals as dissipative structures that are modulated 
signals or localized structures   that are the result of 
interaction between the modulated solution and the 
homogeneous one.  These last structures are also called 
localized cavity solitons. 

These signals can be used in several applications like 
the generation of ultra-high bit rate pulses for data 
transmitting or in   temporal storing of data with a high 
speed. 

II. DESCRIPTION OF THE PCF 
CAVITY

Our system consists of a section of PCF fiber looped to 
itself using an optical coupler, which is characterized by 
a transmission coefficient T and a reflection one R. 

The cavity is lunched continuously by optical power 
CW. 

Figure 1: schematic description of the PCF resonant cavity 

After each cavity round, there will be a portion of the 
optical power out of the cavity and the other part will be 
superposed with the Continuous power at the input. 
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III. MATHEMATICAL MODEL 

The equation that governs the propagation of a light 
wave in the optical fiber is a nonlinear Schrodinger 
equation (NLS) which follows [7]: 

Ɣ - 1)

Where: E is the pulse envelope, ( ) are 
dispersions of order 2, 3 and 4, Ɣ: The coefficient of 

nonlinearity and α is the linear attenuation.

The equation (1) is then submitted to the boundary 
conditions of the cavity [2, 3] which means that the 
intracavity field "E" must vary little from one round of 
cavity to another and the phase shift  between it and the 
CW pump should be as small as possible to ensure the 
resonance of our system.  

These conditions allow us to perform an average over 
the intracavity field and subsequently establish the 
equation that governs the propagation inside the cavity 
under the following form [2, 3, 6] 

                                          (2) 

Where:   S is the input power, E is the envelope of the 
intracavity field, the detuning Δ is the parameter which 
characterizes the phase shift between the pump and E, t 
is the time of a cavity round and τ is the time in a 
referential that depends on the group velocity of the 
wave.

The stationary and homogeneous solution Es of (2) 
satisfies: 

                          (3)

We now find the thresholds of onset of modulation 
instability (MI), to do this we disturb the homogeneous 
solution  with a disturbance that has the following 
form: a = exp (λt -iΩτ), we have then:

                              E= +a                                          (4)

After that we inject (4) in (2) and we perform a linear 
stability analysis on our system. [2, 3, 8]. 

This study consists in taking the linear part of (2) and 
look for power thresholds for which the modulation 
instability appears and the frequency corresponding to 
each threshold. 

The result of this study has shown the existence of two 
instability thresholds: 

The first threshold is , at this level 
we noticed the appearance of two frequencies at the 
same time, and their expressions are as follows [2]: 

                                              (5)

The second threshold is expressed as: 

                                         (6) 

With: . 

At this level we find a single frequency, and it is 
expressed as follows: 

                                                                    (7)

These results are very important because they give us a 
precise information about the frequency of the signals 
which can be generated inside the cavity and also allow 
us to know which parameters of the fiber that influence 
these frequencies, we note that the term doesn’t 

influence the frequency of these signals.

However, the linear stability analysis shows that the 
term introduces a phase noted , which is expressed 
as: 

                                                                   (8)

This phase will induce a temporal drift of the wave 
between a round of cavity and another; it is interpreted 
as constant velocity which is calculated as follows: 

                                        (9)

IV. EFFECTS OF  AND ON
CAVITY SIGNALS 

A.

In this section we numerically integrate (2) near the 
first instability threshold while forcing the system 
to generate a single frequency instead of two as 
predicted by the preceding calculation, this is can 
be made by choosing the parameters of the fiber 
which ensure the following condition: 
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The expression of the frequency becomes: 

                                                             (11)

To ensure that Modulation Instability appears, we 
have as a first step to disturb the homogeneous 
solution Es as shown in the following figure: 

Figure 2: (a) homogeneous stationary solution (b) homogeneous 
stationary solution perturbed for the following parameters: 

Δ=1.3, S=1.129, =-0.75, =0, =0.2. 

We see clearly from the “Fig. 2” that the homogeneous                                    
solution has experienced the phenomena of modulation 
instability, this is the reason of the appearance of a 
totally disturbed signal, we also note that the term 
was ignored so we can conclude in this case that the MI 
is a balance between the second and the forth order of 
dispersion on one side and the nonlinear effects (Kerr 
effect) on other side as predicted by analytical 
calculation.  

After that, the perturbed signal will travel inside the 
cavity by doing several rounds   which will overlap with 
the pump signal at the input of the cavity for each 
round, this will increase the non-linear effects and 
permits to obtain a dissipative structure as shown in the 
following figure: 

Figure 3: (a) perturbed homogeneous and stationary solution 

(b): dissipative structure (modulated solution) for the same parameters 
of Figure 2. 

So we can define the dissipative structures as the result 
of the saturation of the signal which was disturbed by 
the phenomena of modulation instability. This 
saturation is due to the accumulation of nonlinear 
effects after each round cavity.

B.
We now repeat the previous simulation except that this 
time we will consider the influence of the term [3], 
we noticed that for the same parameters we find the 
same modulated signal but with a phase shift between 
two successive rounds of cavity as shown in this figure:

Figure 4: 3D map that shows the time evolution of the modulated 
intracavity solution with the following parameters: 

1.3, S=1.129; =-0.75,

(a) Stationary solution = 0. 

(b) Moving solution = 0.25. 
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“Fig.4” clearly shows the difference between the 

intracavity signal with or without the effect of 

We first noticed that the two figures have exactly the 
same frequency with the same amplitude in the 
presence or absence of , which confirms the predicted 
results in the analytical calculation where it is noted that 

does not influence the frequency of generated signal. 

However, we see that in presence of it introduces a 
phase after each cavity round that gives a constant 
velocity to the wave during its evolution. The numerical 
calculation of the velocity is derived from the 
determination of the slope of the curve presented in 
Fig”4.b”

V

However if we calculate the velocity with the analytical 
method (9) we find that .

It is obvious that there is a difference between the 
velocity calculated by the method of linear stability and 
the one found in our simulations. It is due to the 
presence of another velocity that occurs when we are 
near the threshold of MI; it is the nonlinear velocity and 
in turn affects the total velocity of the wave which 
becomes the sum of both. 

To find the expression of this velocity, it is necessary to 
make a nonlinear calculation which will be the subject 
of the future papers. 

V. CONCLUSION 

We arrived in this work to generate in a PCF resonant 
cavity a train of pulses of ultra-high bit rate with a 
stable amplitude   and frequency by ensuring the 
condition of onset of modulation instability.  

Besides , by using a PCF fiber we were able to 
introduce the effects of higher-order dispersion, we 
have shown that the term of influenced the frequency 
of the generated signal while the term  introduced a 
temporal phase shift after each cavity round, this phase 
is interpreted as a wave velocity that depends on . 
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