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ABSTRACT 

 

Empirical mode decomposition (EMD) algorithm is 

proposed as an alternative to decompose the magnitude 

spectrum of the speech signal into harmonic and spectral 

envelope components. The EMD is a tool for the analysis of 

multi-components signals. The analysis method does not 

require a priori fixed basis function like conventional 

analysis methods (e.g. Fourier transform and wavelet 

transform). The EMD algorithm decomposes adaptively a 

given signal into oscillation modes namely the intrinsic 

mode functions (IMFs) extracted from the signal itself. An 

adaptive method is developed to select the IMF index that 

enables to separate the harmonic component and the spectral 

envelope and then the IMF variance is used as a parameter 

to perform clustering in order to distinguish the IMFs that 

constitute the harmonic component and those constituting 

the spectral envelope. The proposed method is tested on 

both synthetic and natural speech signals. 

 

Index Terms— empirical mode decomposition, intrinisic 

mode function, speech decomposition. 

 

1. INTRODUCTION 

 

In speech production, speech sounds are considered as 

produced by the action of a filter which models the vocal 

tract on an acoustic source [1]. This model is called source-

filter model. The acoustic source is a periodic sequence for 

voiced sounds and a random noise sequence for unvoiced 

sounds. The magnitude spectrum of a voiced speech signal 

can be viewed as the combination of two components: a 

slowly varying component that results from the contribution 

of the vocal tract and a rapidly varying periodic component 

which is the effect of the periodic source (excitation).  

The decomposition of the magnitude spectrum of the speech 

signal into its vocal tract and source contributions plays a 

central role in many areas of speech processing such as 

pitch and formants estimation, speech synthesis, speech 

enhancement, speech and speaker recognition, etc. Given a 

speech spectrum, the aim is to separate the effect of the 

vocal tract from its excitation at the glottis. The separation 

of these two components is very attractive for voice 

processing because it provides a way to analyze, study and 

understand the properties of voice production. In speech and 

speaker recognition, the deconvolution is carried out in 

order to estimate the formant frequencies which are the 

effect of the eigenmodes that characterize the vocal tract [1]. 

In medical applications of speech processing, the filtering 

effect of the vocal tract has to be eliminated and the 

parameters of the excitation are used to derive objective 

measures for quality assessment of voice of dysphonic 

speakers [2][3]. In addition, a voice can be transformed and 

synthesized using independent manipulation of its elements.  

Despite the large number of methods proposed in the 

literature, the estimation of the spectral envelope and the 

harmonic component is most often treated as two 

independent problems. If the harmonic component 

(fundamental frequency) is known, the spectral envelope 

can be estimated reliably and conversely if the spectral 

envelope is known, the harmonic component can be 

estimated accurately. Conventional methods for estimating 

spectral envelope are based on linear predictive coding 

(LPC) [1] or real cepstrum [3]. The estimation of the 

harmonic component or the fundamental frequency (pitch) 

is based on parameters that exploit the assumption of local 

periodicity of voiced speech sounds either in the time 

domain or in the spectral domain [5][6].  

A method that has been proposed as an alternative to 

estimate simultaneously the spectral envelope and the 

harmonic component is the wavelet-based deconvolution 

approach [7]. Experiments have shown that the wavelet-

based method for speech separation provides satisfactory 

results with the data frame length more than or equal to 

1024 samples. A drawback of the wavelet decomposition 

method for speech deconvolution is the use of an a priori 

given basis functions making this approach non-optimal for 

all kinds of speech signals.  

Recently, a signal decomposition method, called empirical 

mode decomposition (EMD), has been introduced for 

analyzing data from nonstationary and/or nonlinear 

processes [8]. The EMD has received more attention in 

terms of applications, interpretation and improvement. The 

major advantage of the EMD is that the basis functions are 

derived from the signal itself and not fixed a priori.  

In this paper, the EMD is proposed as an alternative to 

separate the harmonic component and the spectral envelope 

of the speech signal. The proposed method of separation 

operates in the log-spectral domain. The effectiveness of the 

proposed approach is evaluated on both synthetic and real 

speech and its performance is compared to that of the 

wavelet-based separation method. The remainder of the 
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paper is organized as follows. Empirical mode 

decomposition algorithm is introduced in Section 2. The 

EMD-based approach for speech components separation is 

presented in Section 3. Results based on both synthetic and 

real speech signals are presented in Section 4. Finally, 

conclusions are given in Section 5. 

 

2. EMPIRICAL MODE DECOMPOSITION 

The empirical mode decomposition has been proposed by 

Huang et al. as a new signal decomposition method for 

nonlinear and/or nonstationary signals [8]. The EMD 

decomposes a given signal into a collection of oscillatory 

modes, called intrinsic mode functions (IMFs), which 

represent fast to slow oscillations in the signal. Each IMF 

can be viewed as a sub-band of the signal. Therefore, the 

EMD can be viewed as sub-band signal decomposition. 

Conventional signal analysis tools, such as Fourier or 

wavelet-based methods, require some predefined basis 

functions to represent a signal. The EMD relies on a fully 

data-driven mechanism that does not require any a priori 

known basis. The algorithm operates through the following 

steps : 

1. Initialize the algorithm: j=1, initialize residue r0(t)=x(t) 

and fix the threshold δ  

2. Extract local maxima and minima of rj-1(t)  

3. Compute the upper envelope Uj(t)  and lower envelope 

Lj(t)  by cubic spline interpolation of local maxima and 

minima, respectively 

4. Compute the mean envelope ( ) 2)()()( tLtUtm jjj +=  

5. Compute the component hjth j(t)=rj-1(t) - mj(t)  

6. hj(t) is processed as rj-1(t). Let hj,0(t)=hj(t) and mj,k(t), k=0, 

1, …, be the mean envelope of hj,k(t), then compute 

hj,k(t)=hj,k-1(t)-mj,k-1(t) until 

 

( )∑
= −

−
<

−
=

T

t kj

kjkj

k
th

thth
SD

0
2

1,

2

,1,

)(

)()(
δ  

 

7. Compute the jth IMF as IMFj(t)=hj,k(t) 

8. Update the residue rj(t)=rj-1(t) - IMFj(t)  

9. Increase the sifting index j and repeat steps 2 to 8 until 

the number of local extrema in  is less than 3 )(tr j

The signal reconstruction process is given by (1), which 

involves the IMFs and the residual obtained via the EMD 

algorithm: 

∑
=

+=
N

j

Nj trtIMFtx
1

)()()(  (1) 

 

3. EMD-BASED SPEECH COMPONENTS

SEPARATION 

 

According to the source-filter model of speech production, 

voiced speech is the effect of the convolution of the 

excitation of the vocal tract system and its impulse response, 

so that we may assume the following relationship [1] 

 

)(*)()( tvtetx =  (2) 

 

where x(t) is the speech signal, v(t) is the impulse response 

of the vocal tract  system, and  e(t) is the excitation signal 

which originates at the vocal cords, and * denotes the 

convolution. Windowing the signal frame x(t) and taking the 

Fourier transform magnitude gives  

 

)()()( fVfEfX ww ×=  (3) 

 

where f denotes the frequency, Xw(f), Ew(f) are short-time 

magnitude spectrum of the windowed speech frame and 

windowed excitation signal, respectively and V(f) is the 

frequency response of the vocal tract. 

Taking the logarithm changes the multiplicative components 

into additive components.  

 

)(log)(log)(log fVfEfX ww +=  (4) 

 

It is observed that the log magnitude spectrum is the sum of 

two spectral components: )(log fEw , the log magnitude 

spectrum of the windowed excitation signal and )(log fV , 

the spectral envelope. The log magnitude spectrum can be 

considered as composed of a slowly varying (with respect to 

frequency) contour due the contribution of the vocal tract 

and a series of harmonics characterized by a periodic 

structure. The EMD algorithm yields an effective tool that 

enables to separate the two components of the log 

magnitude spectrum indeed, the EMD algorithm acts as a 

filterbank [9], so that the decomposition of the log 

magnitude spectrum via the EMD algorithm results into 

several oscillating components (IMFs) that can be clustered 

in two classes where each class of components is associated 

to some part of the log magnitude spectrum.  

It has been shown that the IMF variance for speech signals 

significantly decreases after the fourth IMF, as the IMF 

order increases [10]. It was found experimentally that the 

IMF statistics for a speech signal are characterized by a 

peak IMF energy in a higher IMF order.  

This IMF variance build-up is used to select the IMF order, 

to use in the speech components reconstruction. Therefore, 

The IMF index is determined by examining the trough in 

prior to each identified peak. The method used to select the 

optimal index that enables to separate the harmonic 

component and the spectral envelope follows that described 

in [10] : 

1) Compute the variance V(m) of the  IMF as   mth

∑=

f

m fIMF
L

mV )(
1

)( 2
 (5) 

L is the length of the IMFs
 

2) Identify the indices of the peaks, mp in for  )(mV 4>m

3) Find the indices of the troughs mt

4) Compute the IMF variance build-up mb to those peaks 

using mb=mp - mt   

5) Determine the index i  of the first occurrence of the 

largest build-up mb,i in mb and select the corresponding peak 

mp,i in mp
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6) Determine the IMF index M as M=mp,i – mb,i

The different IMFj, j=1, 2, …, N are clustered as follows : 

If j<M, IMFj belongs to the harmonic component 

If j≥M, IMFj belongs the spectral envelope 

 

The harmonic component and the spectral envelope are 

estimated, respectively, as 

∑
−

=

=
1

1

)()(log

M

j

jw fIMFfE  (6) 

)()()(log frfIMFfV N

N

Mj

j += ∑
=

 (7) 

 

To better understand the proposed method, the log 

magnitude spectrum of the signal windowed by a 1024-

samples Hamming window is illustrated in Fig. 1. The 

empirical mode decomposition of the log magnitude 

spectrum results in N=4 IMFs as shown in Fig.1 (a). The 

IMF variance versus the IMF order is displayed in Fig. 1 

(b). As it is observed, the peak is achieved at mp=4 and the 

trough is mt=2 giving a variance build-up mb=mp - mt=2  and 

IMF index M=2. According to the clustering algorithm, the 

harmonic component is estimated as the first IMF , and the 

spectral envelope is obtained as the sum of the remaining 

three IMFs and the residue. 

 

4. RESULTS AND DISCUSSION 

 

The proposed approach has been tested on synthetic speech 

signals as well as on natural speech and its performance in 

terms of accuracy has been compared to that of the wavelet-

based separation method. The sampling rate of all speech 

signals used in the experiment is 20 kHz. The artificial 

signal used in the test is a 1-second synthetic vowel /a/ 

generated according to the source-filter model of speech 

production.  

The source-filter model consists of a source that generates a  

periodic impulse train to model glottal airflow and a vocal 

tract modeled as an all-pole filter characterized by three 

poles [1][11] corresponding to the formant frequencies 

981.6 Hz, 1631.3 Hz and 3165.9 Hz  and bandwidths 140 

Hz, 180 Hz and 55 Hz, respectively. Lip radiation is 

modeled by a first order difference operator R(z)=1 z 1. 

 

Conversely, the spectral envelope estimated via the wavelet-

based separation approach has lost too much details 

compared to the true model for both frame lengths.  
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(b) 

Fig. 1: Illustration of the separation of the harmonic component 

and spectral envelope of synthetic /a/ via empirical mode 

decomposition. (a) Log magnitude spectrum and IMF components. 

(b) IMF variances. 

 

The speech signal has been divided into K non-overlapping 

frames and the harmonic component and the spectral 

envelope have been computed for each frame using the 

wavelet-based method and the EMD-based technique for 

different frame sizes. Fig. 2 displays the average harmonic 

component and the average spectral envelope estimated by 

using frame lengths of 256 and 1024 samples. As can be 

seen, the wavelet-based method fails to estimate accurately 

the harmonic component and the spectral envelope from the 

log magnitude spectrum. The EMD-based approach 

provides accurate estimates for both components whatever 

the frame length. Fig. 3 shows the spectral envelope 

estimated via both methods for frame lengths of 256 and 

1024. The estimates have been superimposed to the true 

model. As can be observed, the EMD-based approach 

results in formant frequencies located with high accuracy. 
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(i) EMD-based separation 
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(ii) Wavelet-based separation 
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(i) EMD-based separation 
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(ii) Wavelet-based separation 

(b) 
Fig. 2: Comparison between wavelet-based and EMD-based 

separation methods applied to a synthetic vowel /a/ for different 

frame lengths. (a) Frame length of 256. (b) Frame length of 1024. 

 

The EMD-based method and the wavelet-based technique 

have been applied to natural vowel /a/ produced by a male 

speaker. Fig. 4 displays the harmonic component and the 

spectral envelope estimated via both methods by using 

frame lengths of 256 and 1024 samples. As illustrated, for a 

frame length of 256, the wavelet-based separation method 

results in a smooth estimate of the spectral envelope and in 

a harmonic component that contains slow variations due to 

the contribution of the vocal tract. For a frame length of 

1024, the harmonic component is accurately estimated but 

the formant frequencies are still undistinguishable from the 

spectral envelope.  The EMD-based separation method 

yields accurate estimates of the harmonic component and 

spectral envelope for both frame lengths.  

0 1000 2000 3000 4000 5000
-30

-20

-10

0

10

A
m
p
lit
u
d
e
(d
B
)

0 1000 2000 3000 4000 5000
-10

0

10

Frequency(Hz)

A
m
p
li
tu
d
e
(d
B
)
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(ii) Wavelet-based separation 
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(ii) Wavelet-based separation 

(b) 

Fig. 4: Comparison between wavelet-based and EMD-based 

separation methods applied to a natural vowel /a/ for different 

frame lengths. (a) Frame length of 256. (b) Frame length of 1024. 

 

The proposed method has been applied to the separation of 

the spectral envelope and harmonic component in 

continuous speech. As an illustration, Fig. 5 shows the 

separation results obtained via the EMD-based approach 

and the wavelet-based method for two successive voiced 

frames extracted from the speech signal corresponding to a 

sentence uttered by a male speaker. The frame length has 

been fixed to 256. As can be observed, the EMD-based 

method provides more accurate estimate of the harmonic 

component than that obtained with the wavelet-based 

approach. The wavelet-based approach is unable to reveal 

the spectral peaks corresponding to the formants whereas 

the EMD-based approach distinguishes clearly the different 

formants. 
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(i) EMD-based separation of the first frame 
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(ii) EMD-based separation of the second frame 
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(i) Wavelet-based separation of the first frame  
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(ii) Wavelet-based separation of the second frame 

 

(b) 

Fig. 5: Comparison between wavelet-based and EMD-based 

separation methods applied to two successive voiced frames 

extracted from a speech signal corresponding to a sentence uttered 

by a male speaker for a frame length of 256 samples. (a) EMD-

based separation. (b) Wavelet-based separation. 

 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSION 

In this presentation, the empirical mode decomposition 

algorithm has been proposed as an alternative to decompose 

the log magnitude spectrum of the speech signal into 

spectral envelope and harmonic component and its 

performance has been compared to that of the wavelet-based 

approach. The proposed method is simple and systematic 

compared to the wavelet-based method. The results show 

that the proposed method provides accurate estimates of the 

harmonic component and spectral envelope for short as well 

as for long frames. 
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