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Abstract- In this paper, the problem of attitude stabilization
was discussed by using the predictive control and the passive
control theory. These controls are applied to the attitude
equation of satellite which includes some types of nonlinear
behavior such as periodic trajectory, chaotic dynamics.
Moreover, the conditions under which the chaotic systems can
be asymptotically controlled to the origin are presented.
Simulation results are provided to show the effectiveness of the
proposed control methods
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I. INTRODUCTION

In recent years, chaos theory has drawn great attention
because of its theoretical importance and application in
attitude dynamics of spacecraft. Chaotic systems are
characterized by being extremely sensitive to initial
conditions, deterministically random, and hence ultimately
unpredictable.

systems, many nonlinear control methods have b¢C
developed. Feedback linearization technique to sp.
attitude control has been discussed in [1-2].
control has been used in [3-6], Generaliz
Control approach has been used in [7], & g-mode
approach has been used in [8]. Ly p\i&- sed control
technique has been utilized in [9] an I-based nonlinear
control in [10]. Nonlinear Hee controlj

In this paper, we investigg

satellite attitude control (ang .1@ elocities and Attitude
angles) using the feedback M

e control and the passive
control methods. Some $ icient conditions are derived

for stabilizing the &1 system. Finally, a comparison
between the resultg®{dWned by the two proposed control is
provided, it is b % the same initial conditions and the
same mome rtia.

STABILISATION OF SATELLITE

In@aper, the passive and the feedback predictive
control ¥re used to stabilize the satellite attitude given by the
equations (1) and (2).

Satellite attitude kinematic equation is as follower:
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In order to control the chaotic evolution of th@
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é=cos¢w),—sin¢wz ©)

y =singsecOw, g sq&@wz

The angular velocities are detep? by a system of first
order differential equations ( @ hations):

Ix WX? 2)wywz +Cx
sz —Iywyw, +Cy @)

z =(Ix —Iy)wxwy +Cy

where Ix, ;are the principal moments of inertia W,

. @re angular velocities about the principal X,y,z axes

in the rigid body, and Cx, Cy, Cz are torques applied
t these axes at time t.
rlier papers [14-16] have taken Ix= 3000 kg.m2, Ty = 2000

kg.m2 and Iz = 1000 kg.m2 with the perturbing torques
defined by:
C. —-1200 0 1000J6/2 , | |1000xcos@siny 3
C |= 0 350 0 @, |+| 1000xcos gsin & )
C.| |-100046 © —400 ®, | |1000xcosy sin &

These torques are chosen to be sufficiently large to induce
very high chaotic motion and are comparable in magnitude
with the available thrusters torques. The dynamics of the
satellite will then exhibit chaotic motion [15].

The temporal evolution of the system defined by (1) and
(2) is shown in Figures. 1 and 2.

A. Stabilisation using the passive control
Passivity is applied to nonlinear systems which are modeled
by ordinary differential equations with input vector u(¢)
and output vector y(¢) [13]:
£(0) = [ (x(0.u(1) W
() = h(x(1)
The system (4) is dissipative with the supply
rate ¥ (u(t), y(¢)) » if it is not able to generate power by itself,

that is, the energy stored in the system is less than or equal
to the supplied power:
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T
V(x(o) 20, V(x(T) =V (x(0) < [W o, yepar )
0

Furthermore, the storage function J/(x(¢))must satisfy the
requirements for a Lyapunov function.
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Figure 1. Angular velocities.
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If there ex1st$$/e semi definite Lyapunov function,

such that:

aV(Jf(t))
ox(1)
+ " (1) (1) + pP(x()))dt
then the system (4) is passive. A passive system implies that
any increase in storage energy is due solely to an external
power supply.
Then the
x(t) = f(t,x(1),0)

in either of the two cases:

(Ot 2 [ 2 (x(0)u(D) + eu” (6)

equilibrium  point of the system:
is asymptotically stable
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@D p>0
(i) e+5>0 (7)

The system (4) can be represented as the normal form [17]:
2= f(2)+g(z,y)y (8)

=1(z,y) + k(z,y)u
The nonlinear system (8) may be rendered by a state

feedback as the form: . Q
A\ NG
.
;;ﬁ =w, +singtantw, +cosgtantw,

u=a(z)+ p(z)y
We consider the system (1) and (2) as followge
é =cosgw, —singw, &
' *
=sing@secOv, +cosdsect, (10)
cos@siny T,

a0, -1,) 1) 1.2

v.vx w w, +7 1
= (I -1y) cos¢sm<9 T} »
n _é\

N cost//sm¢ +£

@ IZ z I, I

Suppos t state Vanable w, is the output of the system
.

a posew, =z, w, =y, w,=z,, $=1z;, 0 =z,and

,,,,, $ z, then the system (10) can be expressed by passive
@ rm (8) where:

1 ) oz

l—(—\/gzI —0.4z, +coszsinz,) .

: 0.z,
> .

f(2)=| z, +cosz; tanz,z, g(z,y)=|sinz, tanz,

—sinz,z, cosz,

€08z, 5€Cz, 2, sinz, secz,

1 .
lz,y)=0,z2z, +I—(0.35y+cosz3 sinz,)» k(z,y)=1(11)
Our object is to désign a smooth control (9) to make the
closed-loop system passive.

Choose a storage function candidate:
V(z,y):W(z)+%y2 (12)
where ¥ (z)is Lyapunov function, with 7 (0)=0 .
The Lyapunov function is:
W(Z):%(ZIZ+ZZZ+Z3Z+Z§+ZSZ) (13)

Derivative of the Lyapunov function is as follows:

6 1 : V6 04
ZZZ +§cosz4 sinzg)+z,(——z, ——

z z

d
o W(z) = z,(04z, +
+cosz; 8inz,) +2,(z, +cosz, tanz, z,) (14)

—z,(sinz; z,) +z(coszy secz, z,) <0
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From equation (14), the zero dynamics of the chaotic system
is asymptotically stable in the sense of Lyapunov.

The derivative of V' (z, y) along the trajectory of system (10)
is

d 0 0
jV(Z,y)=*W(Z)f(z)+*W(Z)g(2,y)J’+l(Z,y)y (15)
t 0z 0z
+k(z,y)yu
The system is minimum phase:
%W(z) f(z)<0 (16)
Equation (15) becomes:
d 0
=GN S (2 y)y + Uz )+ Kz yu)y - (17)

If we select the feedback control (9) of the following form
and consider (11):

u=k (z,y>[—ﬂ<z,y)—"’a—fg(z,w—yyw]

. 1 .
=—o,+0,+0.)z7z, —?jy—;/y—l—cosz3 sinz,

Y ¥y

(18)

—z,sinz, tanz, —z, cosz, —z sinz, secz, +v

where y is positive constant, and v is an external signal
which is connected with the reference input, the above
inequality can be rewritten as

d
V@ s-yyt (19)

Then by integrating both sides of (19), we have
V(z,9) =V (24, 9,) < j— yyi(o)dr + jv(f)y(f)df

If V(z,y)>0and p 0: V(205 ¥0) theﬂn

(e2y)

It satisfies the passive deﬁmtlon (6 %stem (10) is

rendered to be output strict pa531 SP) under the

feedback control.
The system is simulatps Qne fourth-order Runge—

Kutta integration metholg Pith the following initial
conditions (WX, Wy, 2 @ 0, v) = (1,1,1,1,1,1) and use the
controller as in (1

8
The simulatio sts are shown in Figs. 3 and 4 for
different valye' .From the figures we have that the
state vari ickly tend to the origin under passive
conl e bigger ¥ gives the best performance.

ju(r)y(r)dH P2V (zy)+ jyy ()dr >

ICNCRE 13 ISBN

1 978-81-925233-8-5

435

— gatna=11

Figure 3. Control%vgular velocities.
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Figure 4. Controlled attitude angles.

B. Stabilisation using the predictive control

Consider the nonlinear system described by [18-19]

x(t) = f(x(2),u(1)) (22)
where x € R"is the state vector and u € R"is the feedback
controller. We assume that f* is differentiable.

The control input u(t) is determined by the difference
between the predicted states and the current states:

u(t) = K(x, () - x(1)) (23)
where K is a gain vector, x,(¢) is the predicted future state

of uncontrolled chaotic systems from the current state x(z) .
Using a one-step-ahead-prediction, the predictive control

(23) becomes
u(t) = K(x(1) — x(1)) (24)
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NearXx,, we can use the linear approximation for the

uncontrolled system by

M) —x, = Ax(t)—x,) (25)
where 4 € R"" s the Jacobian which is defined as follows:
ax(t) (26)
A=D )=
S (xp) a0,

The controlled system will be described by:
x(1) = f(x(1) + K(A(x(1) = x ) @7

Eq. (25) is rewritten in the form

0x(1) = Adx(1) (28)
With ox(t) = x(1) —x,
(29)
The controlled system is linearized around X, by

Ox(t) = Aox(t) + K(Ox(t) — 6x(1))

= ASx(1) + K(ASx(t) - 5x(1)) (30)

=(A4+K(A-1)ox(¢)
The feedback gain K is determined as follows [18]:

|4+ K(A-T)| <1 (D)
And the vicinity of the fixed point is given by:
r(t) =|x(1) = x(t = 1) (32)

The controlled system will be described by [19]:
(o) SE@)+u@  fr<e
X =
F(x(@) otherwise,
Where & is a positive small real number.

We consider the system as follows:

° Iy -1
WX_(Y Z)WY

lX

c 1, - (34)
lY

o (x-1
lZ

In order to contr@]t m to the unstable equilibrium
point[000]", we determine the correction which
will be applied t ctrrent state of the chaotic system. For
this purpose termine the control input u(t) defined by

Eq.(24).

O 0
Qt) = K({(o,w,w, +OI'35 w,—w,) (33)

"

0
The controlled system is given by:
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$t =1K((o,w,w, +gwy —-e,)
)
(@ 0 ailleurs
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(36)

Its linearized system around the fixed point is glve%

s, 1)
0= 0 6§ (37)
_(ﬁ 035

K(f—I{ )

Then, K must satisfy the inequa

0'35+K(0'3:.5 1 (38)

2.424 (39)

And the VlClIl \e fixed point is given by:
=|w, ()= w, (¢ -1) (40)
rolled system is described by:

This implies that:

Thus, the
*

(41)

Si ‘wy t)—w, (- 1)‘ <¢

In the simulation process the initial states of system are
(Wx,Wy,W;)=(1, 1, 1) and the gain vector is K =[0 0.5 0].
The simulation results are shown in Figs. 5 and 6 for k=0.5
and K=3.
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Figure 5. Controlled angular velocities for k=0.5.
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Figure 6. Controlled angular velocities for k=3.

From the simulation results, it shows that the time
responses of the system under the proposed feedback
predictive control converge quickly to zero if the values of
K are in the interval [0,1.424]. And if the value of K is out

of the interval, the predictively controlled system cannot be
stabilized

The following figures show the variations of the angular
velocities controlled by the feedback predictive control,
passive control and the impulsive method based on the same

initial conditions.
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, (8) and (9), the results for the passive

re more satisfactory than those for feedback
trol.
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Figure 9. Controlled w,.

1I. CONCLUSION

In this paper, a feedback predictive control and a passive
control have been proposed to stabilize the attitude of
satellite.
Necessary and sufficient conditions for stabilization are
given. An illustrative example is finally included to
visualize the effectiveness of each control. At the end a
comparison between the simulation results is presented.
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