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Abstract- In this paper, the problem of attitude stabilization 

was discussed by using the predictive control and the passive 

control theory. These controls are applied to the attitude 

equation of satellite which includes some types of nonlinear 

behavior such as periodic trajectory, chaotic dynamics. 

Moreover, the conditions under which the chaotic systems can 

be asymptotically controlled to the origin are presented. 

Simulation results are provided to show the effectiveness of the 

proposed control methods 

Keywords: Chaotic satellite attitude, Predictive control, 

passive control. 

I.   INTRODUCTION 

In recent years, chaos theory has drawn great attention 

because of its theoretical importance and application in 

attitude dynamics of spacecraft. Chaotic systems are 

characterized by being extremely sensitive to initial 

conditions, deterministically random, and hence ultimately 

unpredictable.  

In order to control the chaotic evolution of these 

systems, many nonlinear control methods have been 

developed. Feedback linearization technique to spacecraft 

attitude control has been discussed in [1-2]. Impulsive 

control has been used in [3-6], Generalized Predictive 

Control approach has been used in [7], and a sliding-mode 

approach has been used in [8]. Lyapunov-based control 

technique has been utilized in [9] and LMI-based nonlinear 

control in [10]. Nonlinear H  control in [11].  

In this paper, we investigate the stability of chaotic 

satellite attitude control (angular velocities  and Attitude 

angles) using the feedback predictive control and the passive 

control methods. Some new sufficient conditions are derived 

for stabilizing the chaotic system. Finally, a comparison 

between the results obtained by the two proposed control is 

provided, it is based on the same initial conditions and the 

same moment of inertia. 

II.   STABILISATION OF SATELLITE

   In this paper, the passive and the feedback predictive 

control are used to stabilize the satellite attitude given by the 

equations (1) and (2).  

   Satellite attitude kinematic equation is as follower: 

zy

zy

yx

ww

ww

www

seccossecsin

sincos

tancostansin

The angular velocities are determined by a system of first 

order differential equations (Euler equations):  
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where Ix, Iy, Iz are the principal moments of inertia xw , 

yw , zw  are angular velocities about the principal x,y,z axes 

fixed in the rigid body, and Cx, Cy, Cz are torques applied 

about these axes at time t. 

Earlier papers [14-16] have taken Ix= 3000 kg.m2, Iy = 2000 

kg.m2 and Iz = 1000 kg.m2 with the perturbing torques 

defined by: 
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These torques are chosen to be sufficiently large to induce 

very high chaotic motion and are comparable in magnitude 

with the available thrusters torques. The dynamics of the 

satellite will then exhibit chaotic motion [15]. 

    The temporal evolution of the system defined by (1) and 

(2) is shown in Figures. 1 and 2. 

 

A. Stabilisation using the passive control

Passivity is applied to nonlinear systems which are modeled 

by ordinary differential equations with input vector )(tu  

and output vector  )(ty  [13]: 

    
)(()(

))(),(()(

txhty

tutxftx
                                   (4)

The system (4) is dissipative with the supply 

rate ))(),(( tytuW , if it is not able to generate power by itself, 

that is, the energy stored in the system is less than or equal 

to the supplied power: 
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T

dttytuWxVTxVtxV

0

))(),(())0(())((,0))((  (5) 

Furthermore, the storage function ))(( txV must satisfy the 

requirements for a Lyapunov function.  
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Figure 1. Angular velocities. 
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Figure 2. Attitude angles. 

 
 

If there exists a positive semi definite Lyapunov function, 

such that: 

dttxtyty

eututxf
tx

txV
dttytu

T

TT
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then the system (4) is passive. A passive system implies that 

any increase in storage energy is due solely to an external 

power supply. 

     Then the equilibrium point of the system: 

)0),(,()( txtftx                             is asymptotically stable 

in either of the two cases: 

(i) 0   

(ii) 0e                                                              (7) 

 

The system (4) can be represented as the normal form [17]: 
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The nonlinear system (8) may be rendered by a state 

feedback as the form: 
yzzu )()(                          (9) 

We consider the system (1) and (2) as follows: 
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    Suppose that state variable  
yw  is the output of the system 

and suppose
1zwx , ywy , 

2zwz , 
3z , 

4z and 

5z  then the system (10) can be expressed by passive 

form (8) where: 
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    Our object is to design a smooth control (9) to make the 

closed-loop system passive. 

     Choose a storage function candidate: 

2

2

1
)(),( yzWyzV                   (12) 

where  )(zW is Lyapunov function, with 0)0(W . 

The Lyapunov function is:
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Derivative of the Lyapunov function is as follows: 
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From equation (14), the zero dynamics of the chaotic system 

is asymptotically stable in the sense of Lyapunov. 

The derivative of V (z, y) along the trajectory of system (10) 

is 

yuyzk

yyzlyyzgzW
z

zfzW
z

yzV
dt

d

),(

),(),()()()(),(        (15) 

The system is minimum phase:   

     0)()( zfzW
dt

d

Equation (15) becomes:  

yuyzkyzlyyzgzW
z

yzV
dt

d
)),(),((),()(),(     (17) 

If we select the feedback control (9) of the following form 

and consider (11): 
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where   is positive constant, and  is an external signal 

which is connected with the reference input, the above 

inequality can be rewritten as 

yyyzV
dt

d 2),(                           (19) 

Then by integrating both sides of (19), we have 
t t

dydyyzVyzV
0 0

2

00 )()()(),(),(       (20) 

If   0),( yzV  and  ),( 00 yzV  then 

t t t

dydyyzVdy
0 0 0

22 )()(),()()(
    (21) 

It satisfies the passive definition (6), the system (10) is 

rendered to be output strict passive (OSP) under the 

feedback control. 

      The system is simulated by the fourth-order Runge–

Kutta integration method with the following initial 

conditions (wx, wy, wz, , , ) = (1,1,1,1,1,1) and use the 

controller as in (18). 
    The simulation results are shown in Figs. 3 and 4 for 

different values of .From the figures we have that the 

state variables quickly tend to the origin under passive 

control, also the bigger  gives the best performance.

 
Figure 3. Controlled angular velocities. 

 
Figure 4. Controlled attitude angles. 

 

 

B. Stabilisation using the predictive  control

Consider the nonlinear system described by [18-19] 

))(),(()( tutxftx (22) 

where nRx is the state vector and nRu is the feedback 

controller. We assume that f  is differentiable. 

   The control input u(t) is determined by the difference 

between the predicted states and the current states: 

))()(()( txtxKtu p
                  (23) 

where K  is a gain vector, )(txp  is the predicted future state 

of uncontrolled chaotic systems from the current state )(tx . 

    Using a one-step-ahead-prediction, the predictive control 

(23) becomes 

))()(()( txtxKtu                 (24) 
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Near fx , we can use the linear approximation for the 

uncontrolled system by 

))(()( ff xtxAxtx                   (25) 

where 
nnRA is the Jacobian which is defined as follows: 

fX

fx
tx

tx
xfDA

)(

)(
)(                    (26) 

The controlled system will be described by: 

)))((())(()( fxtxAKtxftx        (27) 

Eq. (25) is rewritten in the form 

)()( txAtx                               (28) 

With                         
fxtxtx )()(                           

(29) 

The controlled system is linearized around fx  by 

)()((

))()(()(

))()(()()(

txAKA

txtxAKtxA

txtxKtxAtx

         (30) 

The feedback gain K is determined as follows [18]: 

)(AKA                                 (31) 

And the vicinity of the fixed point is given by: 

)1()()( txtxtr                           (32) 

The controlled system will be described by [19]: 

,))((

)()())((
)(

otherwisetxf

triftutxf
tx           (33) 

Where  is a positive small real number. 

 

We consider the system as follows: 
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     In order to control the system to the unstable equilibrium 

point T
000 , we have to determine the correction which 

will be applied to the current state of the chaotic system. For 

this purpose, we determine the control input u(t) defined by 

Eq.(24). 
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Its linearized system around the fixed point is given by: 
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Then, K must satisfy the inequality 

1)1
35.0

(
35.0

yy

K  (38)

This implies that: 

424.11 K  (39)

And the vicinity of the fixed point is given by: 

)1()()( twtwtr yy
 (40)

Thus, the controlled system is described by: 

)1()(

0

)
35.0

(()( 2 twtwsi

ailleurs

ewwwKtu yyy

y

zxy

(41) 

 

     In the simulation process the initial states of system are 

(wx,wy,wz)=(1, 1, 1) and the gain vector  is K = [0 0.5 0].     
The simulation results are shown in Figs. 5 and 6 for k=0.5 

and K=3. 

 

 
Figure 5. Controlled angular velocities for k=0.5. 
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Figure 6. Controlled angular velocities for k=3. 

 

     From the simulation results, it shows that the time 

responses of the system under the proposed feedback 

predictive control converge quickly to zero if the values of 

K are in the interval ]424.1,0[ . And if the value of K is out 

of the interval, the predictively controlled system cannot be 

stabilized 

     The following figures show the variations of the angular 

velocities controlled by the feedback predictive control, 

passive control and the impulsive method based on the same 

initial conditions. 

 
Figure 7. Controlled wx. 

 

     From figures (7), (8) and (9), the results for the passive 

stabilization were more satisfactory than those for feedback 

predictive control. 

 
Figure 8. Controlled wy. 

 
Figure 9. Controlled wz. 

 

III.   CONCLUSION  

     In this paper, a feedback predictive control and a passive 

control have been proposed to stabilize the attitude of 

satellite. 

Necessary and sufficient conditions for stabilization are 

given. An illustrative example is finally included to 

visualize the effectiveness of each control. At the end a 

comparison between the simulation results is presented. 
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