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Abstract: A backstepping control system is proposed to 

control the attitude dynamics of a satellite subjected to 

deterministic external perturbations which induce chaotic 

motion when no control is affected in this paper. The 

proposed method is a systematic recursive design 

approach based on the choice of Lyapunov functions for 

constructing feedback control laws. The effectiveness of 

the proposed control scheme is verified by the simulated 

results. 
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1. INTRODUCTION 

Chaotic systems are described by a set of nonlinear and 

deterministic dynamical equations. Although its equations 

completely define their evolution, they are unpredictable 

in the long term. This non-predictability in the long term 

due to the fact that chaotic systems are very sensitive to 

initial conditions. 

The control of chaotic system has received increased 

research attention [1-7], since the classical work on chaos 

control was first presented by Ott and al. [8]. In the last 

decade, several works interested to attitude control 

systems of satellites using new advanced nonlinear control 

theory which ensured better performances. In [9] 

impulsive control has been used to Chaotic attitude 

control of satellite. More recently, Mohammad bagheri 

and all [10] proposed the model predictive control method 

to stabilize the Lorenz-type chaotic attitude of a satellite. 

In other development, Backstepping design has been 

widely used for controlling chaotic systems [11-13] since 

backstepping approach provides a recursive method 

ensure global stability, tracking and transient performance 

for a board class of system in strict-feedback form.  

Backstepping approach has been used in [10] to control 

intermittent chaotic transport in inertia ratchet that model 

the motion of a particle in an asymmetric periodic 

potential, and in [11] to the control and synchronization of 

chaos in RCL-Shunted Josephson junction.  

The work presented in this paper deals with the 

application of the backstepping control system to control 

the attitude dynamics of a satellite subjected to 

deterministic external perturbations which induce chaotic 

motion. 

This paper is organized as follows. After this introduction, 

Sec. 2 focuses on the description of the attitude dynamics 

of satellite. The matter discussed in Sec. 3 concerns the 

Backstepping control of Chaotic Attitude Control of 

Satellite. Finally, simulation results are presented in Sec. 4 

in order to shown method effectiveness.  

2. DESCRIPTION OF THE ATITTUDE 

DYNAMICS OF SATELLITE 

The dynamical equation of the rigid satellite attitude 

control system is [14]: 

( )

( )

( )
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               (1) 

where , ,  are the principal moments of inertia, xw ,

yw , zw  are angular velocities about the principal x, y, z 

axes fixed in the rigid body, and Cx, Cy, Cz are torques 

applied about these axes at time t. If we choose 

, , and 

with the perturbing torques defined by: 
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The dynamics of the satellite will then exhibit chaotic 

motion. The chaotic trajectory of the satellite is 

represented in Figure 1. 

3. BACKSTEPPING CONTROL OF CHAOTIC 

ATTITUDE CONTROL OF SATELLITE WITH ONLY 

ONE CONTROLLER 

Our objective is to stabilize the system (1) to the desired 

values ( ,
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Fig. 1. Chaotic attractor: phase portrait of the angular velocities

Step 1: First, a new variable, , is introduced which moves the 

equilibrium point to the origin.

                    (3) 

Its time derivative is expressed as: 

                    (4) 

Rewriting equation (4) implies that: 

                       (5) 

The system (1) becomes: 

   

The control problem is to find a control law u so that the 

state   can track any reference command  

 when ). The first Lyapunov function is defined as 

                                (7)  

The derivative of the first Lyapunov function takes the 

Form 

                             (8)  

  (9) 

To cancel the last four terms in the above derivative, we 

choose the update law: 

         (10) 

We take: 

                (11) 

with   the Virtual control law. 

Let  represent the error between and :

                               (12) 

The derivative  for the next design step is: 
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  With            (13) 

                       (14) 

                                         

(15) 

Substituting the obtained virtual control rule (10) into (9), 

we obtain the first derivative of the Lyapunov function: 

                            (16) 

Step 2:  

The second Lyapunov function takes the form (15) and (7) 

          (17) 

The time derivative of V2 is: 

                (18) 

       (19) 

To cancel the last five terms in the above derivative, we 

choose the update law: 

              (20) 

We take: 

                             (21) 

with   the Virtual control law. 

Let  represent the error between   and :

                        (22) 

The derivative  for the next design step is  

                               (23) 

                              (24) 

                                    (25) 

Substituting the obtained virtual control rule (25) into (19), 

we obtain the second derivative of the Lyapunov function: 

                (26) 

Step 3:  

The third Lyapunov function takes the form (17) and (20) 

                      (27) 

The time derivative of V3 is : 

                     (28) 

                             

(29) 

                  (30) 

  (31) 

With a positif constant.  

  (32) 

 (33) 

so that 

From the third derivative given by (33), the control is 

determined as 

           (34) 

Taking into account (3) and (23), (34) becomes: 

     

(35) 

4. RESULTS AND DISCUSSION 

In the numerical simulations, the fourth-order Runge–

Kutta method is used to solve the systems with time step 

size 0.001 and we assume that the initial condition, 

(w1(0), w2(0), w3(0)) = (3 4.1 2). 

We solve system (1) with the controller u(t) as defined in 

(36). We put: 

and we choose .

.
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Fig. 2. Time series of the state variables (w1, w2, w3) with .. The control input to origin is active at t = 50 

Fig. 3. Time series of the state variables (w1, w2, w3) with different values of .

Fig. 4. Tracking response (w1d=w3d=0 w2=sin(t)). The control input is active at t = 50. 
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The results obtained in Figure 2. show that the state 

variables move chaotically with time when the controller 

is switched off and when the controller is active at t=50 

the state variables are controlled to the origin (0, 0 ,0). 

As seen form in Figure 3, whenever the value of beta 

increases the settling time of the system decrease. Figure 

4. show the trajectory of the Chaotic Attitude Control of 

Satellite has been forced to the assigned orbit (w1d=w3d=0

and w2=sin(t)).  

5. CONCLUSION

In this paper, an effective control method for controlling 

Chaotic Attitude Control of Satellite has been proposed 

using active backstepping design. The numerical results 

obtained show that the backstepping control is effective in 

stabilizing the chaotic systems to a steady state as well as 

tracking of any desired trajectory to be achieved in a 

systematic way. 
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