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Abstract— the optimization of the photovoltaic (PV) system 

performance is done through the energy management stage. 

The first step of the optimization consists in extracting the 

maximum power available from the PV generator. This is done 

by the Maximum Power Point Tracking (MPPT) of the PV 

generator which varies with the irradiance, the temperature 

and the load. Several techniques as the ‘Perturbation and 

observation’ (P&O), the ‘Incremental conductance’ (INC), the 

‘Power feed-back method’, the ‘Hill climbing’ are used for this 

tracking.  

In this article, we present a new MPPT algorithm, based on 

neural network controller (NNC), whose structure 

configuration is of three layer; an input layer, an output layer 

and a hidden layer. In order to show the functionality of the 

developed neural controller algorithm, we have applied it to a 

standalone PV system for several conditions of irradiance and 

temperature. The tests conducted on this NNC show that it 

allows the system to reach quickly the optimal performance 

with a stable pattern for all the cases considered. 

 
Keywords- PV system; Maximum Power Point Tracking 

(MPPT); Neural Network; Neural Network Controller 

I.  INTRODUCTION  

A photovoltaic generator (PVG) consists of a number of 

solar cells connected in series and in parallel depending on 

the required power, voltage and current ratings. Although 

their prices are decreasing, PVG systems still require 

expensive investments. Therefore, it is very important to 

extract as much energy as possible from a PVG system. 

Since the operating point of a PVG-load system depends 

on the load, the irradiance and the temperature, the PV 

system must be managed so that it must operates at its 

maximum power point in order to be used efficiently.  

Several algorithms are used to optimize the power supplied 

by the PVG. The simplest maximum power tracking 

algorithm is to operate the PVG under constant voltage 

reference and to use a step up or down type DC–DC 

converter which keeps the PVG voltage constant.  

The Perturbation and observation (P@O) method is another 

algorithm which is used for the maximum power tracking. It 

is based on a periodic perturbation of the operating point 

and the observation of change in power. Although it is a 

well established algorithm, some confusions and instabilities 
may occur when the irradiation and (or) load changes 

rapidly and randomly [1-3]. Two decades ago, a new 

generation of tools based on Artificial Intelligence was used 

in the MPPT algorithms, such as neural network and fuzzy 

logic which work with imprecise inputs, do not need an 

accurate mathematical model and  handle nonlinearities [4-

7].  Thanks to their efficiency and robustness, Neural 

Network (NN) algorithms have been widely applied in the 

MPPT [8-10]. 

In this article we present a intelligent MPPT controller, 

based on neural network algorithm which is applied to a 

standalone PV system. 

The paper is organized as follows: Next section describes 

the artificial neural network modeling. Section 3 provides 

development procedure for a proposed MPPT-NNC. The 

simulation results obtained by the developed MPPT neural 

controller for several operating conditions of irradiance and 

temperature under Simulink-matlab environment is outlined 

in section 4. Finally, conclusions and future action are 

drawn in section 5.  

II. ARTIFICIAL NEURAL NETWORK  MODELLING  

Artificial neural networks are densely interconnected 

processing units that utilize parallel computation algorithms. 

Neural networks (NN) are composed of simple elements 

operating in parallel. These elements are inspired by 

biological nervous system, and the network functionality is 

determined by the connection between them [11]. 

Basically, the processing elements of an artificial neural 

network are analogous to the brain neurons, which consist 

of many simple computational elements arranged in several 

layers [12]. An artiÞcial neuron is composed of many parts. 

The input values are external stimuli from the environment 

or come from the outputs of other artificial neurons. The 

first thing an artificial neuron does is to compute 

the weighted sum of its inputs; the weights are real-valued 

numbers that determine the contribution of each input. The 

synaptic weight is changed by using a learning rule. 
Summation function is a function that calculates the effect 

of inputs and weights completely on this process element.  

The weighted sums of the input components neti are 

calculated using (1) as follows: 
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Activation function defines the properties of artificial 

neuron and can be any mathematical function.  In general, 

we choose it from the following set of functions:  Step 

function, linear function and Non-linear (Sigmoid) function. 

The output value (2) is calculated applying an activation 

function: 

( )i jy f n e t

III. DEVELOPMENT PROCEDURE FOR A PROPOSED 

MPPT NEURAL CONTROLLER 

The proposed NNC is used to determine the optimum 

duty cycle Dopt which corresponds to the maximum 

power Pmax at any given solar irradiation S and PV cell 

temperature T.  The elaboration of an MPPT controller 

based on neural network goes though several steps as 

indicated in Fig. 1. 

A. Constitution of the database 

The voltage and current of the PV module are measured 

instantaneously by A/N converter, and the power is 

calculated as follows: 

( ) ( ) . ( )P n i n v n

The two inputs of the proposed NNC are the tracking error 
(E) and the change of the error ( E), which are defined as 
[13, 14]:  

( ) ( 1 )
( )

( ) ( 1 )

P n P n
E n

V n V n

           
          ( ) ( ) ( 1)E n E n E n                                    

(5)                                                                

 

Where n is the sampling time, P(n) is the instant power of 

the PV module and V(n) is the instant corresponding 

voltage. These inputs are chosen so that the instant value of 

E (n) shows the load operation power point location, while 

E (n) expresses the moving direction of this operation 

point. The output variable is the duty cycle D generated in 

the pulse width modulation (PWM) signal form applied to 

the power MOSFET of the DC-DC converter usually used 

as a switching device since it is easy to control and can be 

operated at high frequencies. The power flow is thus 

controlled by varying the on/off duty cycle D of the 

switching period [13].  

The transmitted control signal D to the DC/DC converter 

drives the load in order to track the maximum power of the 

PV module. The inputs and output values along with their 

ranges have been summarized in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Development procedure for the proposed NNC 

TABLE 1  The  range  of  the  input  and  output  parameters  in  ANN 

model 

B. The choice of the neural network structure 

The second step in the development of the proposed 

controller is the choice of the network structure. The 

number of inputs and outputs is generally imposed by the 

approximating function. In order to find an optimal 

configuration of the NNC, we have experienced several 

structures depending on the number of layers, the number of 

the neurons by layers and parameters as weights and 

activation functions.  

At last, we have reached the following optimal 

configuration: 

The input layer is composed of two neurons 

corresponding to the two input variables E and E. 

The hidden layer is composed of 5 neurons whose 

activation functions are tangential sigmoid. 

The output layer with one neuron representing the 

control signal "D" with a linear activation function.  

The number of neurons in the hidden layer was empirically 

optimized during the training phase. Indeed, the many tests 

conducted have shown that the most stable structure is 

composed of five neurons. It should also be noted that the 

choice of the hidden layer activation function has not been 

adopted arbitrarily, but was chosen after several tests that 

showed that the tangential sigmoid function converges faster 

compared to the exponential sigmoid function during the 

training stage. Fig. 2 shows the proposed NN architecture 

for the MPPT-control and Fig. 3 presents the internal 

structure of the first and the hidden layers of the proposed 

NN model in Simulink. 
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Fig. 2. Neural network architecture proposed for the MPPT control 

 

 

Fig. 3. Internal structure of the first and hidden layers of the proposed NNC 

 

C. Training phase 

     This step concerns the training process of the neuron 

using an appropriate algorithm. Many ANNs algorithms 

were used in literature such as the unsupervised Kohonen 

algorithm [15] and the Hopfield one [16]. Among 

algorithms that adjust the process weights, back-propagation 

algorithm is the most widely used; the weights of the 

network are iteratively trained with the errors propagated 

back from the output layer [17]. The training process was 

done using a supervised training based on the back-

propagation algorithm.  Two factors must be optimized: the 

number of epochs which represent the training time, and the 

training performance which is the minimum mean square 

error (MSE) between the network outputs and the target 

outputs. During this step, the back propagation algorithm 

looks for the weights Wi which minimize the mean square 

error (MSE) governed by the following equation: 

21
( )

2
d e s i r e d e s t i m e dM S E D D

Where Ddesired is the target value, and Destimed is the output 

value.

In other words, during the training, the weights of the 

network are continuously modified as long as the MSE error 

greater than a certain threshold value corresponding to a 

suitable accuracy. The aim is to find the weights that lead to 

the convergence of the target value. Once the training 

finished (minimum mean square error is achieved) the 

weights are no more modified, which correspond to the 

optimal NN structure. The training curve  for  the  proposed  

NN  architecture  presented  in Fig. 2 is demonstrated on 

Fig. 4 showing convergence to the  target  MSE of  

8.053*10-6  after  205  iterations. 

D. The MPPT  neural controller in PV system 

For each cycle of the control algorithm, a measure of the 

network input variables (E) and ( E) are performed then the 

generated duty cycle (D) is used by the DC/DC converter to 

maintain the system working in his MPP. This is done 

through the propagation of these data by the neural network. 

The NNC inserted in the PV system is shown in Fig. 5. 
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Fig. 4. Training curve for the proposed NNC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Synoptic of the MPPT neural controller 

IV. SIMULATION RESULTS OF MPPT NEURAL 

CONTROLLER APPLIED TO STAND-ALONE PV SYSTEM 

In order to test the performance of the developed NNC, 

we have treated the case of a Stand Alone PV system 

composed by a generator (module of 36 cells, P=60Wp), the 

MPPT controller, a boost DC-DC converter and a lead- acid 

battery of 12V [18, 19].The implementation of this PV 

system with the proposed NNC under Matlab/Simulink 

environment is shown on the Fig. 6. Two kinds of tests were 

conducted (constant and varying S and T) to demonstrate 

the ability of the developed MPPT controller to react 

quickly and efficiently depending to the environmental 

conditions. 

A. Simulation of the MPPT neural controller under 

Standard Tests Conditions (STC) 

       For the case of constant conditions, the Standard Tests 

Conditions (STC) are considered, S=1000W/m2 and T= 

25°C. Fig. 7 shows the results obtained for the module 

power, and the duty cycle D in these conditions. As it can be 

seen on this figure, after a short interval of time of about 5 

seconds, which could be considered as a response time of 

the PV system, the maximum power of the module and the 

battery are reached and remain stable. This proves that the 

neural controller works well for a given constant conditions.   
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B. Simulation of the MPPT neural controller under variable 

conditions of irradiance and temperature 

For this second group of tests, we have studied the 

influence of two important parameters in the operation of 

the PV system that is irradiation and temperature. We have 

varied each time one of these parameters while the other 

was kept constant. For the parameter that is varied we have 

also studied how the MPPT controller reacts to the rate of 

change of this parameter. The different scenarios developed 

aim to see how the MPPT neural controller operates in 

dynamic operating conditions. 

1) Variation of solar irradiance S, T=25°C 

In this case the temperature is assumed to be constant,  

(T= 25°C) and the solar irradiance is changed slowly and 

rapidly. In the following are presented the simulation results 

for the studied cases.   

 
Fig. 6.  Layout diagram of a PV system with a MPPT –NNC in 

Matlab/Simulink environment 
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Fig. 7. Variation of the module power and the duty cycle D in STC 

conditions (S= 1000W/m2 and T= 25°C). 
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Fig. 8. Variation of the module power  and the duty cycle ‘D’ for a fast 

decrease of S from 1000 to 500 W/m2 in 5 seconds at T=25° C. 
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Fig. 9. Variation of the module power and the duty cycle ‘D’ for a slow 

decrease of S from 1000 to 500W/m2 in 120 seconds at T= 25° C. 
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Fig.10. Variation of the module power and the duty cycle ‘D’ for a fast 

increase of S from 500 to 1000 W/m2 in 5 seconds at T=25°C. 
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Fig. 11. Variation of the module power  and the duty cycle ‘D’ for a slow 

increase of S from 500 to 1000 W/m2 in 120 seconds at T= 25°C. 

From Fig. 7, 8, 9 and 10, we notice that the power of the 

module follows the increase or the decrease of the 

irradiance, thus when irradiation decreases from 1000 W/m2 

to 500W/m2 the power diminishes from 63 to 32W in 5s and 

120s depending the rate of variation of the irradiance. 

2) Simulation results under variable conditions of 

temperature 

The temperature of the solar cell is an important factor 

that affects the solar panel characteristics and therefore the 
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power. Similar tests as for the solar irradiance were 

performed and the results are presented in the following 

figures.   
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Fig. 12. Variation of the module power  and the duty cycle ‘D’ for a fast 

decrease of T from 45°C to 20°C in 5 seconds at S= 1000W/m2. 
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Fig. 13. Variation of the module power  and the duty cycle ‘D’ for a slow 

decrease of T from 45°C to 20°C in 120 seconds at S= 1000W/m2. 
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Fig.14 Variation of the module power  and the duty cycle ‘D’ for a fast 

increase of T from 20°C to 45°C in 5 seconds at S=1000W/m2. 
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Fig.15 Variation of the module power  and the duty cycle ‘D’ for a slow 

increase of T from 20°C to 45°C in 5 seconds, at S=1000W/m2. 

Inversely to irradiance, we can see on Fig. 12, 13, 14 and 15 

that the maximum power of the module increases when the 

temperature decreases and vice versa. When the temperature 

increases from 25°C to 45°C the power diminishes from 

63W to 57W in 5 s and 120s, at a rate of the decrease of 

temperature. 

V. CONCLUSION 

       In this paper, an intelligent controller based on neural 

network has been designed to optimize the performance of a 

PV system. This controller has been tested under many 

conditions of solar irradiance and cell temperature. We have 

shown that the developed NNC algorithm achieved very 

good performance and fast response even in variation of 

climatic conditions as it requires very short time to reach 

and stabilize at the maximum power point hence improving 

the amount of energy effectively extracted from the PV 

modules and increasing the efficiency of the PV system. 

The next step in the study concerns the behavior of the PV 

system with the neural controller when the solar irradiance 

and the cell temperature are changing at the same time. We 

will also investigate the influence of the variation of the 

load on the PV system performance.  We are planning, also, 

to use other neural network algorithms, such as the Hopfield 

and Kohenen networks, to control the PV systems in order 

to determine the most suitable algorithm.  
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Abstract—the aim of this work is to determine by ellipsometry 

the optical properties of semiconductor thin films made of 

gallium nitride, gallium arsenide and gallium phosphide. 

Ellipsometry is an optical method based on the behavior of 

polarized light. The light reflected on a surface induces a 

change in the polarization state which depends on the 

characteristics of the material (complex refractive index and 

thicknesses of the different layers constituting the device). The 

paper describes the experimental aspects concerning the 

semiconductor samples, the SE400 ellipsometer principle, and 

the results obtained by direct measurements of ellipsometric 

parameters (Psi and delta) and modeling using “Sentech 

Instruments GmbH”,software. 

 
Index Terms—semiconductors GaN, GaAs, GaP, ellipsometry, 

optical properties 

I.INTRODUCTION 

The development of semiconductors materials as films 

has contributed to an increase of performance of electronic, 

photonic and photovoltaic systems including lower cost of 

components for mass production. The structure of the 

deposited films may be monolayer or multilayer with 

thicknesses which vary from one atomic plane (several 

Angstroms) to several hundreds of micrometers. Their 

optical properties depend on their microstructure. 

The objective of this work is to determine the optical 

properties of thin films and semiconductor. The most optical 

properties are the complex refractive index and thickness, as 

well as all notions of transmission and reflection. For this 

goal ellipsometry is adapted as characterization technique of 

semiconductor sample set on GaAs, GaN, GaP. 

Ellipsometry is an optical method based on polarized 

light. Indeed, the light reflection on a plane surface induces a 

change in the polarization state which depends on the 

characteristics of the material (complex refractive index and 

thickness of the layers). 

Advanced applications of thin films have diversified in 

chemistry and optic fields while the optical layer applications 

have enabled the development radiation sensors [Bahoura, 

M., et al., (2008). The intentions of systems produced by 

films on the substrate are the access to the electrical 

conductivity of metalized surface for scanning electron 

microscope, increase or decrease the reflection (anti-

reflection coating, metal mirror...), selecting of reflection or 

transmission in a certain range of wavelength (selective 

mirror, interference filters...), fabrication of protective layers. 

Between the conductors and insulators films, one can 

classify a number of solids which are semiconductors. The 

III-V semiconductors are compounds formed from a member 

of the third column and the fifth column of the periodic table. 

The study of their properties, and in particular the band 

structure shows that the lightest elements give wide band gap 

compounds whose properties be similar to those of insulating 

compounds including boron, aluminum, nitrogen, and 

phosphorus, are required by the semiconductor with a high 

carrier mobility, designed for optoelectronic or a strip 

structure is necessary for direct optical transitions are 

effective. The main materials are the III-V compounds type 

GaAs, GaP, GaN [Duboz, J. Y.(1999)]. The existence of the 

band gap explains the transparency of semiconductor 

infrared radiation [Duboz ,J.Y.(1999) , Han, J., at.al. (2007)]. 

This work shows the measurement principle of 

ellipsometry and the use of the SE400 ellipsometer to 

characterize the optical parameters of samples set by two 

methods: directly (measured) and indirect (modeling). 

II. PRINCIPLE OF ELLIPSOMETRY 

We consider a surface illuminated at an incidence i0 by a 

monochromatic plane wave (Fig.1). The polarization 

direction of the incident wave linearly polarized is identified 

by the angle . The field component parallel to Oy 

component is called S (transverse electric relative to the 

plane index), and the perpendicular thereto is called P 

(transverse magnetic) [Azzam, R. M. A. and. Bashara N. M, 

(1987)]. 

 
Fig. 1.Direction field in the plane perpendicular to the incident  

wave vector 

The incident wave can be written: 
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