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Abstract—In this paper, a novel adaptive type-2 fuzzy sliding 

mode control is designed. In order to stabilize the unstable 

periodic orbits of uncertain perturbed chaotic system. This 

letter is assumed to have an affine form with unknown 

mathematical model, the type-2 fuzzy system is used to 

overcome this constraint. For sliding mode, adaptive fuzzy type 

2 systems have been introduced in order to generate the 

switching signal to avoid both the chattering and the constraint 

on the knowledge of upper bounds disturbances and 

uncertainties. These adaptive fuzzy type-2 systems are adjusted 

on-line by adaptation laws deduced from the stability analysis 

in Lyapunov sense. Simulation results show the good tracking 

performances by using the proposed approach. 

Keywords-- Chaotic system, sliding mode, fuzzy logic type-2; 

Lyapunov stability. 

I. INTRODUCTION

Chaos is a particular case of nonlinear dynamics that has 
some specific characteristics such as extraordinary 
sensitivity to initial conditions and system parameter 
variations, it is well known fact that chaotic dynamics exist 
in a large variety of nature systems (e.g, aerodynamics, 
biological and physical systems). Many nonlinear control 
techniques have been applied for chaos elimination and 
chaos synchronization such as active control, adaptive 
control, sliding mode control and fuzzy control [1-8].  

A useful and effective control scheme to deal with 
uncertainties, time varying properties, nonlinearities and 
bounded externals disturbances is the sliding mode control 
(SMC) [9-11]. However, its major drawback in practical 
applications is the chattering problem. 

Numerous techniques have been proposed to eliminate 
this phenomenon in SMC as boundary layer method, fuzzy 
logic approach and higher order sliding mode [12-16].  

The objective of this paper is to force the n-dimensional 
chaotic system to a desired state even if it has uncertainties 
system and external disturbances, by incorporation the fuzzy 
type-2 approach and sliding mode control. We introduced
adaptive type-2 fuzzy systems for model the unknown 
dynamic of system and calculate the switching term of 
sliding mode controller. Their updates are performed using 
adaptation laws derived from the study of stability in the 
Lyapunov sense. 

The organization of this paper is as follows. After a 
problem formulation In section II, we give brief description 
of Interval type-2 fuzzy logic system in section III. In 
section IV, the adaptive type-2 fuzzy sliding mode control 
scheme is presented. Simulation example demonstrate the 
efficiently of the proposed approach in section V. Finally, 
section VI gives the conclusions of the advocated design 
methodology. 

II. PROBLEM FORMULATION

Consider a chaotic n
th

 order uncertain system which has an 

affine form:  
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where x  is the measurable state vector, ( , )f x t  is unknown 

nonlinear continuous and bounded function, and ( )u t ÎÂ   

 state output and control  input of the system, respectively. 

( )d t  is the external bounded disturbance,
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where , dF �  are two positive constants.

The control problem is to get the system to track an n-

dimensional desired vector ( )dy t  which belong to a class of 

continuous functions on 
0[ , ]t ¥ . Let’s the tracking error as;
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The control goal considered is that; 

lim ( ) lim ( ) ( ) 0,d
t t

e t x t y t
®¥ ®¥

= - ®  (4) 

To satisfy this objective, we consider the following 
sliding surface [17]:
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where �  is a positive constant. It defines the slop of sliding
surface. The derivative of s  is: 
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obtain: 

� �( )( , ) ( , )n

s ds e t y f x t u t d & '    & (7) 

If ( , )f x t   is known and free of external disturbances

and uncertainties, and when the system is restricted to the 

sliding surface ( , ) 0s x t & , it will be governed by an

equivalent control equ  obtained by: 

( )( , ) n

eq s du f x t y + ,&  ' '- ./ 0 (8)

The global control is composed of the equivalent control 

and the switching term su  such that: 

( ( , ))su k sign s e t& 
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By adding this term to (8), we obtain the global control:

( )( , ) n

s d su f x t y u + ,&  ' ' '- ./ 0 (9) 

The sufficient condition to ensure the transition 
trajectory of the tracking error from approaching phase to 
the sliding one is: 

21
( , ) ( , ) ( , ) ( , )

2

d
s t s t s t s te e

t
e e

d
h= £ -& (10)

After some manipulations, we obtain: 

� �( , )k d sign s e t ! ' 1   (11) 

Then we can choose the parameters of k  as follows: 

k d!2 '   (12)

Note that the control law (9) depends only on the 

parameters , k� , and nonlinear continuous function

( , )f x t . However, in the approaching phase, the 

knowledge of the 'd s  upper bound and ( , )f x t is

required in the optimal choice of k . Therefore ( , )f x t is

unknown and ( ) 0d t 3 .

In the rest of paper we solved these problems by 
introducing an adaptive fuzzy sliding mode controller. 

The purpose of this paper is to approximate ( , )f x t  and 

the switching control by interval type-2 fuzzy systems.
Furthermore, the adaptive laws will be derived to adjust 
parameters. 

III. INTERVAL TYPE-2 FUZZY LOGIC SYSTEM

Fuzzy Logic Systems (FLSs) are known as the universal 
approximators and have various applications in 
identification and control design.  A type-1 fuzzy system 
consists of four major parts: fuzzifier, rule base, inference 
engine, and defuzzifier.  A T2FLS is very similar to a 
T1FLS [18]; the major structure difference being that the 
defuzzifier block of a T1FLS is replaced by the output 
processing block in a T2FLS, which consists of type-
reduction followed by defuzzification. 

Figure 1. Structure of a type-2 fuzzy logic system. 

In a T2FS, a Gaussian function with a known standard 

deviation is chosen, while the mean (m) varies between m1

and m2. Therefore, a uniform weighting is assumed to 

represent a footprint of uncertainty as shaded in Figure. 2.

Because of using such a uniform weighting, we name the 

T2FS as an Interval Type-2 Fuzzy Set (IT2FS). 

Figure 2. Interval type-2 Gaussian fuzzy set. 

It is obvious that the type-2 fuzzy set is in a region 

bounded by an upper MF and a lower MF denoted as ( )
A

xm %
and ( )

A
xm

%
 respectively, and is called a foot of uncertainty 

(FOU). Assume that there are M rules in a type-2 fuzzy rule 
base, each of which has the following form:  

1 1: , , ,i i i i i

n n l rR IF x is F and and x is F THEN y is w wé ùë û
% %K

where xj, j=1,2,…,n and y are the input and output variables 

of the type-2 fuzzy system, respectively, the i

nF%  is the type-

2 fuzzy sets of antecedent part, and i i

l rw wé ùë û  is the

weighting interval set in the consequent part. The inference 
engine combines rules and provides a mapping from input 
type-2 fuzzy sets to output type-2 fuzzy sets. The operation 
of  type-reduction is to give a type-1 set from a type-2 set. 

In the meantime, the firing strength F
i
for the ith rule can 

be an interval type-2 set expressed as;
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In this paper, the center of set type-reduction method 
[18] is used to simplify the notation. Therefore, the output 
can be expressed as; 
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where cos ( )y x  is also an interval type-1 set determined by 

left and right most points (
ly  and 

ry  ), which can be 

derived from consequent centriod set  [
i

rw ,
i

lw ] (either 
ii

w or w )  and the firing strength ,
ii i if F f fé ùÎ = ë û  . The 

interval set  [
i

rw ,
i

lw ] (i=1,… ,M) should be computed or set 

first before the computation of cos ( )y x . For any value 

cosy yÎ . Hence, left-most point ly  and right-most point ry

can be expressed as [18];

1 1
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The defuzzified crisp output from an IT2FLS is the 

average of 
ry  and 

ly  that is: 

( )
2

l ry y
y x

+
= (17)

IV. ADAPTIVE INTERVAL TYPE-2 FUZZY SECOND ORDER

SLIDING MODE CONTROL

In this section, the nonlinear function ( , )f x t  and 

switching signal su  will be replaced by adaptive type-2

fuzzy systems. Furthermore, the adaptive laws to adjust 
parameters will be derived from the stability study of the 
closed-loop process in the Lyapunov sense. This adaptation 
in addition smoothing the control will enable us to better 
anticipate disturbances. 

A. Proposed Type-2 fuzzy logic systems (FLS) 

All adaptive systems used to approximate the control 

gains and unknown function ( , )f x t  have the same 

structure presented in (15), as the output fuzzy systems 
using the center of set method [19]: 
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Hence, left-most point 
ly  and right-most point 

ry  can 

be expressed as;
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where 
iq , i=1,…M are the adjustable parameters. The

defuzzified crisp output from an IT2FLS is the average of 

ry  and 
ly  as in (16).

We replace ( , )f x t and the switching term  by ˆ( , )ff x �

and ˆ ( , )su s �  respectively such that:

ˆ( , ) ( )
T

f f ff x x� �  �        (20)

ˆ ( , ) ( )T

su s s� �  �     (21) 

where
f and� �  are adjustable parameters vectors.

B. Proposed controller synthesis 

In order to guarantee the global stability of closed loop 
system (1) with the convergence of tracking error to zero, 
we propose the following control law: 

( )ˆ ˆ( , ) ( )n

s d su f x t y u s! !� " # # #$ %& '
(22)

In order to derive the adaptive laws of adjusting 

f and� �  . We define the optimal parameter vector
*

f�

and 
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where , ,f xW W W and sW  are constraint sets of suitable 

bounds on , ,f xq q  and s, respectively and they are defined 

as; 

{ } { }: , : ,f f f fM Mq q q qW = £ W = £

{ } { }: , : ,x x s sx x M s s MW = £ W = £

where , ,fM M xM and sM  are positive constants. 

The minimum approximation error is defined as;

*ˆ( ,t) ( , )fw f x f x qé ù= -ë û
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By using fF M b+ = , it can be easily concluded that 

w  is bounded w b£ . 

Then the optimal parameters of ( ,t)f x and su  are 

defined as: 
* *ˆ( , ) ( )

T

f f ff x x� �  � (23)
* * *ˆ ( , ) ( )T

su s s� �  � (24)

To study the closed loop stability and to find the 
adaptation laws of adjustable parameters, we consider the 
following Lyapunov function: 

21 1 1
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where
*� � �� "%  and

*

f f f� � �� "% . fg and g  are

positive training constants, so the time derivative of (25) is : 
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By using the control law (22), the equation (20-21), the 
time derivative of the sliding surface (7) becomes: 
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The substitution of (27) in (26)  gives: 
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By choosing the following adaptation laws: 

( , ) ( )ff f s e t x�  "�& (29)

( , ) ( )s e t s� "  � "& (30)

where � ��
& &%  and

f f� ��
& &% . Therefore, we obtain:

( )* ( )V s w d k sign s� # "& (31)
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According to Barbalat’s lemma [17], we can state that 
the sliding surfaces are constructed to be attractive and 

lim ( ) 0
t

e t
!"

� . Therefore, the control objective is satisfied, and

hence, we can synthesize the robust controller based on 
sliding mode type-2 fuzzy controller, in which we can force 

the output system x to follow a bounded reference 

trajectory 
d

y . 

The overall scheme of the adaptive type-2 fuzzy sliding 
mode control is shown in Figure. 3. 

Figure 3. Overall adaptive type-2 fuzzy sliding mode control scheme in 

presence of noise. 

V. SIMULATION EXAMPLE

The above described control scheme is now used to 
control the states of modified duffing system. Consider the 
following duffing system, which may exhibit chaotic 
behavior. The dynamic equation of system is given by; 

1 2

3

2 1 2 2 1 3 1

,

cos( ),

x x

x p x p x p x q wt

=ìï
í

= - + - +ïî

&

&

 (33) 

where 1 2 30.4, 1.1, 1, 2.1p p p q= = = = - and 1.8w = .

The simulation results of the system (33) free of input are 
shown in (Figure.4) with initial states x1(0)=1 and x2(0)=0. 

The control objective is to force the states 

# $, 1,2ix t i� of the system (33) to track the reference 

trajectories # $ # $ # $ # $# $1 / 3 sin 0.3sin 3dy t t t!� � ,

and # $ # $ # $ # $# $2 / 3 cos 0.9cos 3dy t t t!� � . The system 

initial conditions are # $ % &0 1 0
T

x �  and the proposed control 

input signal is (22), then the system (33) can be expressed 
by; 

1 2

3

2 1 2 2 1 3 1

,

cos( ) ( ),

x x

x p x p x p x q wt u t

=ìï
í

= - + - + +ïî

&

&

Figure 4. Time response  (x1,x2) and typical chaotic behavior of 
duffing oscillator. 

To design the equivalent part of control signal, the input 

variables of the fuzzy system ˆ( , )ff x "  are chosen as

# $, 1,2ix t i� , The following type-1 and interval type-2

fuzzy membership functions of # $, 1, 2ix t i� are selected as

( )l
iF

x# for i=1,…,7, shown in TABLE.I, with variance

0.5$�  and initial values
2*7(0)f O" � . Similarly to

generate the adaptive fuzzy system which allow us to 

approximate the reaching part of control signal ( su ), we 

consider three type-2 fuzzy interval sets according to the 

variable # $s t  (Figure. 5).

The sliding surface is selected as: s e el= +& ; where

10%� . Simulation time tf = 20 second and the step size
h=0.005. 

Figure 5. Interval type-2 antecedent membership functions of # $s t .

TABLE I. INTERVAL TYPE-2 AND TYPE -1 FUZZY MEMBERSHIP 

FUNCTIONS FOR XI (I= 1, 2).

Mean (m) Mean (m)

m1 m2
m

(type-1)
m1 m2

m
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1 ( )
i
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i
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i
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x� -1.5 -0.5 -1 7 ( )
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The simulation results are classified into two parts 

as follows: adaptive type-1 fuzzy controller and 

adaptive type-2 fuzzy controller. For the both 

simulations we choose the initial system states

� � � �0 1 0
T

x  , and the training data is corrupted with 

internal noise (SNR=20dB). 

Part I: Adaptive type-1 Fuzzy sliding mode control;

We see in figures. 6, 7, that the state trajectories (x1(t), x2(t))

converge quickly to their references (yd1(t), yd2(t)), Figure. 8 

shows the applied control. 

Figure 6. The output trajectory of � �1x t .

Figure 7. The output trajectory of � �2x t .

Figure 8. Applied control � �u t .

Figure 9. Phase-plane trajectory of system. 

Figure 10. The absolute tracking error
1( )e t  . 

Part II: Adaptive type-2 Fuzzy sliding mode control;

Figure 11. The output trajectory of � �1x t . 

Figure 12. The output trajectory of � �2x t . 

Figure 13. Applied control � �u t . 

Figure 14. Phase-plane trajectory of system 

Figure 15. The absolute tracking error 
1( )e t . 

According to figures 11, 12 and 15, we see a good 
tracking reference of (x1(t), x2(t)). Figure. 13 shows the 
applied control.

In order to have a quantitative comparison of tracking 
error and control effort, in (TABLE.II), we have reported the 
Integral Absolute Error (IAE) of the both controller.

We clearly show that the proposed approach (adaptive 
type-2 fuzzy sliding mode controller) provides a better 
tracking performance than that of type-1 fuzzy controller 
and this latter must expend more control effort. 
Nevertheless, from above simulation results, we can see that 
in order to deal with noisy training data the type-1 fuzzy 
controller must expend more control effort. 
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TABLE II. COMPARISON OF CONTROL EFFORTS AND INTEGRAL 

ABSOLUTE ERROR (IAE) VALUES OF TOW CONTROLLERS. 

T = tf / h = 4000

Control effort

1

T

i

i

u
�

�

IAE

20

1
0

( )e t dt 

20 dB  Noise

Type-1 10444 2.2372

Type-2 10397 2.2187

VI. CONCLUSION

In this paper, the problem of stabilization orbit of 
nonlinear uncertain chaotic system in the presence of 
internal disturbance is solved by incorporation of adaptive 
interval type-2 control scheme and sliding mode approach. 
In order to eliminate the chattering phenomenon efficiently,
adaptive interval type-2 fuzzy systems are introduced to 
calculate the switching control term. Based on the Laypunov 
stability criterion, the adaptation laws of adjustable 
parameters of the type-2 fuzzy systems and the stability of 
closed loop system are ensured. A simulation example has 
been presented to illustrate the effectiveness and the 
robustness of the proposed approach. 

REFERENCES

[1] U. E. Vincent, “Chaos synchronization using active control and 
backstepping control: a comparative analysis”, Nonlinear 
Analysis: Modelling and Control, Vol. 13, No. 2, pp. 253–261,
2008.

[2] J. H. Park ,” Chaos synchronization of a chaotic system via 
nonlinear control”, Chaos, Solitons and Fractals, vol.  25, pp. 579–
584, 2005. 

[3] B. A. Idowu, U. E. Vincent, A. N. Njah, “Control and 
synchronization of chaos in nonlinear gyros via backstepping 
design”, International Journal of Nonlinear Science, Vol. 5, No.1, 
pp. 11-19, 2008. 

[4] S. Vaidyanathan, “hybrid synchronization of liu and lü chaotic 
systems via adaptive control”, International Journal of Advanced 
Information Technology (IJAIT) Vol. 1, No. 6, December 2011.

[5] S. Vaidyanathan,“Hybrid synchronization of  hyperchaotic  liu 
systems via sliding mode control”, International Journal of Chaos, 
Control, Modelling and Simulation (IJCCMS) , vol.1, no.1, 
September 2012. 

[6] M. Pourmahmood, S. Khanmohammadi, G. Alizadeh, 
”Synchronization of two different uncertain chaotic systems with 
unknown parameters using a robust adaptive sliding mode 
controller”, Commun Nonlinear Sci Numer Simulat, vol. 16, pp. 
2853–2868, 2011. 

[7] H.-T. Yau, C.-S. Shieh, “Chaos synchronization using fuzzy logic 
controller”, Nonlinear Analysis: Real World Applications, vol. 9, 
pp. 1800– 1810, 2008.

[8] T.C Lin, M.C Chen, V. E Balas , M. Roopaei, C.M Lee, “  
Synchronization of uncertain multivariable chaotic systems using 
adaptive interval type-2 fuzzy sliding mode control ”, SOFA 2010, 
4th international workshop on soft computing applications, Arad, 
Romania, 15-17 July, 2010. 

[9] S. Dadras, H.R. Momeni, V.J. Maj. “Sliding mode control for 
uncertain  new chaotic dynamical system”, Chaos, Solitons and 
Fractals, vol. 41, pp. 1857-1862, 2009.

[10] C. Edward, K.Sarah. “Sliding Mode Control: theory and 
applications”, Spurgeon, Taylor & Francis, 1998.

[11] M. Roopaei, M. Zolghadri, S. Meshksar, “Enhanced adaptive 
fuzzy sliding mode control for uncertain Nonlinear systems”, 
Commun Nonlinear Sci Numer Simulat, vol. 14, pp. 3670-3681, 
2009.

[12] J.Y. Hung, W. Gao, J.C. Hung, “Variable structure control: a 
survey”, IEEE Transactions On Industrial Electronics, vol. 40, no 
1, 1993. 

[13] M. Roopaei, M. Zolghadri. “Chattering  free fuzzy sliding mode 
control in MIMO uncertain systems”, Nonlinear Analysis, vol. 71, 
4430-4437, 2009.    

[14] H. Lee, V.I. Utkin, “Chattering suppression methods in sliding 
mode control systems”. Annual Reviews in Control, vol. 31, pp. 
179–188, 2007. 

[15] W. Perruquetti, J.P. Barbot, “Sliding mode control in 
engineering”, Marcel Dekker, 2002.

[16] A. Levant, “Principles of 2-sliding mode design”, Automatica, vol. 
43, pp. 1247-1263, 2007. 

[17] J.E. Slotine, W.P. Li, “Applied Nonlinear Control”, Prentice-Hall, 
Englewood Cliffs, NJ, 1991. 

[18] N.N. Karnik, J.M. Mendel, Q. Liang, “Type-2 fuzzy logic 
systems,” IEEE Trans. Fuzzy Syst, vol. 7, pp. 643-658, 1999.

Proceedings of The first International Conference on Nanoelectronics, Communications and Renewable Energy 2013 493

ICNCRE ’13 ISBN : 978-81-925233-8-5 www.edlib.asdf.res.in

D
o
w
n
lo
a
d
e
d
 f
ro

m
 w

w
w
.e

d
lib

.a
sd

f.
re

s.
in


