An Investigation of Factors Affecting Instructors' Usage of E-Learning Systems at the University of the West Indies

Thala V. Sarjoo¹ and Simon H. Fraser² ¹The University of the West Indies, St. Augustine, Trinidad and Tobago thala_sarjoo@hotmail.com ²The University of the West Indies, St. Augustine, Trinidad and Tobago simon.fraser@sta.uwi.edu

Abstract- This study seeks to explore the factors that determine the level of instructors' activation of the e-learning platform at the University of the West Indies (UWI), St. Augustine Campus. The Unified Theor of Acceptance and Use of Technology (UTAUT) model was used to evaluate responses from over 600 instructors from important factors, i.e. subjective norms, facilitating conditions, perceived usefulness and perceived ease of use perceiver to the UTAUT model. After using exploratory factor analysis and structural equation modelling three of the four factors emerged as significant; facilitating conditions, perceived usefulness.

I. INTRODUCTION

The University of the West Indies (UWI) was founded in Jamaida in 1948 as a division of The University of London. Over the last six decades UWI has grown to three physical campuses in Jamaica (Mona), Barbados (Cave Hill) and Trinidad (St. Augustine) as well as a virtual Open Campus. Together these four campuses serve the English speaking Caribbean with an enrolment of 47,000 as of the 2011/2012 academic year [1].

Over the last decade, UWI St. Augustine has adopted information and communication technologies to support various blended eLearning initiatives. The first system was based on Web CT and this was upgraded in 2005/2006 [2] to myeLearning based on the Moodle content management system. As of January 1st, 2014, Campus IT Services, listed 662 active myeLearning courses 12, up from 393 in 2005 [3]. Despite this growth, the number of active myeLearning courses accounts for tralatively small proportion of the over 2,000 courses offered by the campus each year.

This paper examines the astructors' acceptance of the myeLearning system and is, as far as we know, one of the few studies focusing a technology acceptance amongst instructors in the region.

The objectives of this study are:

a) To clearly identify critical factors affecting UWI instructors' acceptance to e-learning in context of higher education.

b) To examine the viability the Unified Theory of Acceptance and Use of Technology model
 (UTAUT) to measure instructors' technology acceptance at the UWI, St Augustine Campus.

c) To identify gaps that may inhibit the full utilization of the present e-learning system at the UWI and to propose possible recommendations that may help diminish these gaps.

The sections that follow include the literature review, methodology, findings and recommendations.

II. LITERATURE REVIEW

E-learning refers to "the use of internet technologies to deliver a broad array of solutions that enhances knowledge and performance" [4]. It relies on ICT based tools (e.g. internet, computers, telephones, radio, video, and others) and content created with technology (e.g. animations) to support teaching and learning activities [5].

One of most popular types of e-learning is blended learning. Blended learning is defined as "face-to-face oral communication and online written communication optimally integrated such that the strengths of each are blended into a unique learning experience congruent with the context and intended educational purpose" [6].

According to [7] over 90% of universities and colleges in United States and about "95% of the same institutions in United Kingdom have adopted E-learning systems for students and faculties" [8].

Despite the rapid uptake, many instructors lack the knowledge and ability to integrate the technologies into their teaching practices [9] [10]. According [11] many universities' problem lie with instructors, who over the years have become accustomed to the teacher-centered approach of face to face tutorials, lectures and mentoring. As a result, "Classroom users of potentially powerful information technologies are seen too after take the reduced form of mindless activities that do little to alter the expectations, assumptions, and practices of higher education teaching" [12].

This has often led to a learning transfer misalignment which creates a sapin the outcome of e-learning systems at many universities because "ICT implementation often takes place without a theory and many institutions do not spread any resources on trying to understand what kind of chances ICT and computers bring to their systems; they just follow the new trend, casting doubts on the success and the effectiveness of such initiatives" [13].

III. THE PROPOSED MODEL AND ASSOCIATED HYPOTHESES

In order to study instructors' use of the myeLearning system at the St. Augustine campus we used a model based on a combination of e-learning acceptance nodel (ELAM) [5], the Unified Theory of Acceptance and Use of Technology [14] and the venerable Technology Acceptance Model[15].

The proposed model contains for (4) core constructs which are performance expectancy (PE), effort expectancy (EE), subjective influence (SI) and helitating conditions (FC).

PE is defined as the "degree o which an individual believes that using a system will help him or her to attain gains in job performance" [14] Under PE, Perceived Usefulness (PU) is defined as "the extent to which a user believes that utilizing a certain system would influence his/her job performance and productivity positively" [15]. As such we propose that;

Perceived usefulness affects instructors' attitude towards using e-learning systems at the UWI.

EF is the "degree of ease associated with the use of the system" [14] Under EE, Perceived Ease of Use (PEOU) is defined as "the extent to which people believe that using certain systems would be effortless" [15] It is assumed that if the instructors' perceptions about using a system are perceived to be relatively unproblematic to operate then there is a great likelihood that the instructor will use the system. Consequently;

H₂: *Perceived ease of use affects instructors' attitude towards using e-learning systems at the UWI* In TAM [15], PEOU is often observed as directly influencing PU. Thus

H₃: Perceived ease of use affects perceived usefulness of e-learning systems at the UWI.

30th – 31st July, 2014, University of Greenwich, London, UK. DOI: 10.978.819252/12218

SI and is defined as "the degree to which an individual perceives that important others believe he/she should use the new system". Under SI, Subjective Norms (SN) are defined as "a person's perspective that most people who are important to him think he should or should not perform the behaviour in question" [15]

H₄. The influence of Subjective Norms affects instructors' attitude towards using e-learning systems at the UWI.

Attitude (ATT) is centered on the belief that a person will only perform a behaviour if it is believed to have a positive outcome. Therefore;

H_{5:} Attitude will positively affect instructors' intention to use e-learning systems at the UWI Behavioural intention is users' decision, willingness or expectation to perform certain actions. 'n indication of how hard people are willing to try and of how much an effort they are planning to exert, in order to perform the behaviour" [16]. It is assumed that PE, EE and SI will have a significa fect on instructors' behavioural intentions to use e-learning systems.

H6: Behavioural intention to use will affect instructors' actual use of an eing system at UWI.

Facilitating conditions are conditions that an individual cannot influence or share immediately and it is defines as "the degree to which an individual believes that an organization and technical support/ infrastructure exist to support Liplices, training and support, and leadership use of the system" [14]. FC consists of ICT infrastructure, institutional [5]

H_{7:} Facilitating conditions will affect instructors' activity se of e-learning systems at UWI

The actual usage is the end result that follows behavior al intention to use and can only occur when the individual's intention is enforced and internalized, resulting in the performance of a desired action.

Figure 1: Proposed Model

IV. METHODOLOGY

The sample elements in this study targeted 635 full time and part time senior lecturers, lecturers, assistant lecturers and professors across all five faculties of the St. Augustine campus. Invitations were emailed to all instructors in the above categories. Each email contained a unique hyperlink to an online questionnaire hosted at Survey Monkey.

The instrument consisted of 36 Likert questions and one open ended question soliciting general feedback and perceptions. This method of data collection was cost effective given the instructors' geographic dispersion across the campus and diverse teaching schedules. Of the 635 instructors contacted, 126 completed the questionnaire giving a response rate of 20%.

V. DATA ANALYSIS

The data collected was imported into SPSS version 15 and factors that contained at least 5 to 8 factor loadings per construct were subsequently reduced, through the use of Exploratory Factor Analysis to 4 of the high loadings per construct. Structural Equation Modelling (SEM) was then used to assess the path diagram convert it into a graphical and structural path diagram.

VI. RESULTS

Normality testing was conducted to ensure that the variables contained in the data for vere fairly normally distributed. In all cases, the mean in the data set ranged between 3 and 5 with major of responses favouring the mid-section while the standard deviation was 1 and lower in most cases indicating that here is a low deviation from the norm and consistent with a normal distribution

The cronbach alpha for the data set was computed at .931 well above well above the 0.7 threshold and suggests there is very high internal consistency [17].

RELIABILITY ST

Cronbach's Alpha	Cronbach's Alpha Bases on Standardized Items	N of Items
.931	.936	35

exploratory factor analysis followed by an assessment of scale The measurement model was examined reliability and convergent validity usin

Table 2 shows the summarized table of questions and total variance for each variable. All variables are tested with the use of questions that are design o collect specific information about the tested variable.

QUESTIONS DROPPED AFTER FACTOR ANALYSIS Item Item name Total Variance Explained Perceived use PU1 PU Kept Kept 69.58% Kept PU6 Kept PU7 Kept PU8 Dropped

TABLE 2

Perceived E	ase of Use	
PEOU1	Kept	
PEOU2	Kept	
PEOU3	Kept	68 860/
PEOU4	Kept	08.80%
PEOU5	Dropped	
PEOU6	Kept	· · · · · · · · · · · · · · · · · · ·
Attitude	I	6.
ATT1	Kept	
ATT2	Kept	14.70
ATT3	Kept	
Subjective N	i Norm	<u> </u>
SN1	Kept	
SN2	Dropped	····
SN3	Kept	65.86%
SN4	Dropped	
SN5	Kept	
Intention to	Use	
ITU1	Kept	N •
ITU2	Kept	88.94%
ITU3	Kept	
Facilitating	Condition	
FC1	Kept	
FC2	Dropped	
FC3	Dropped	
FC4	Kept	<u> </u>
FC5	Kept	00.08%
FC6	Kept	
FC7	Dropped	
FC8	Dropped	
Actual Use		
AU1	Kot	
AU2	, RON	96.33%
	\\\	

 TABLE 2

 QUESTIONS DROPPED AFTER FACTOR ANALYSIS (CONTINUED)

structural equation modelling was used to refine the proposed model and test the model fit. After several iterations the following model yielded the best fit.

The revised model showed relationship patterns similar to the Technology Acceptance Model [15]. This technology acceptance model has been a mainstream under for many years after being thoroughly examined and continually validated through numerous studies, the converse is said to be true for the novel UTAUT model.

Generally, the revised model fulfilled all the riteria when examined and all fit indices (CFI 1.000, TLI 1.016, and NFI .992) were at the acceptable level of 0.00 above. All factors except SN were statistically relevant and retained for the revised model. The probability vas approximately 0.8, significantly above the acceptable level of 0.5 or above.

Table 3 depicts the hypothesis change for both the a priori expectation of the proposed model and the a posteriori results of the revised model.

30th – 31st July, 2014, University of Greenwich, London, UK. DOI: 10.978.819252/12218

A Priori Expectations: The Proposed Model		A Posterior Results: The Revised Model	
Proposed Hypotheses	Status	Revised Hypotheses	Status
H1: Perceived usefulness	Transferred: path relationship	H1: Facilitating	New path relationship
positively affects instructors'	merged into the revised model	conditions positively affect	found: supported: good fit
attitude towards		Perceived ease of use of	
using e-learning systems at the		e-learning systems at UWI	
UWI			
H2: Perceived ease of use	Transferred: path relationship	H2: Perceived ease of use	Accepted from old proposed
positively affects instructors'	merged into the revised model	positively affects perceived	model: supported (1997
attitude towards		usefulness of	
using e-learning systems at the		e-learning systems at UWI	
UWI			$\lambda $
H3: Perceived ease of use	Transferred: path relationship	H3: Perceived ease of use	A capted from old proposed
positively affects perceived	merged into the revised model	positively affects instructors"	model: supported (H2)
usefulness of e-learning		attitude towards the use of e-	
systems at the UWI		learning systems at	
		the UWI	
H4: The influence of Subjective	Rejected- no path relationship	H4: Perceived utefulness	Accepted from old proposed
Norms positively affects	found, dropped from the	positively free's instructors"	model: supported (H1)
instructors'	proposed model	attitude towards the use of e-	
attitude towards using e-learning		haring systems at	
systems at the UWI.	N 10	he UWI	
H5: Attitude will positively	Transferred: path relations in	H5: Perceived usefulness	New path relationship
affect instructors' behavioural	merged into the revised model	positively affects instructors"	found: supported: good fit
intention to use e-learning		behavioural	
systems at the UWI.		intention to use an e-	
		learning system	
H6: Behavioural intention to	Transferred: path relationship	H6: Attitude will	Accepted from old proposed
use will positively affect instructors'	merged into the revised model	positively affect instructors"	model: supported (H5)
actual	\mathcal{O}	behavioural intention	
use of an e-learning system at		to use e-learning systems at	
UWI.		the UWI.	
H7: Facilitating condition. will	Rejected- no path relationship	H7: Behavioural	Accepted from old proposed
positively affect instructors' actual	found, dropped from the	intentions to use will	model: supported(H6)
use of eLearning	proposed model	positively affect instructors"	
systems at UWI		actual	
		use of e-learning systems	
$\mathbf{\nabla}$		* Subjective Norms	Dropped

TABLE 3 REVISED HYPOTHESES

VII. RECOMMENDATIONS

While the model exhibits a reasonably good fit and most of the hypotheses are supported, many lecturers still do not use myeLearning, and many that do, use it only for posting course outlines and class schedules. In the open ended question, many complained about a poor user interface, lack of support, slow networks and the difficulty of integrating multimedia.

30th – 31st July, 2014, University of Greenwich, London, UK. DOI: 10.978.819252/12218

In order to make the best use of the technology and to increase usage and effectives, UWI St. Augustine should consider adopting the following recommendations.

Consider implementing a dedicated -e-learning department in each faculty to can help instructors 1. integrate all the components of e-learning.

2. Create incentive schemes that encourage instructors to incorporate eLearning technologies where appropriate as well as to reward innovations and best practices.

3. Encourage early adopters and experienced to share their experiences as well as to mente reluctant staff members.

4. Introduce a system of continuous monitoring and benchmarking vis-à-vis acknowle ders so

as to benefit from advances in best practice and to avoid unnecessary mistakes.

VIII. BIBLIOGRAPHY

- The University of the West Indies (2012). Strategic Plan: 2012-2017. Retrieved from http://www.n [1] edu/opair/strategic-
- plan/UWI+Strategic+Plan+2012-2017+(Final).pdf on June 15th, 2014.
- UWI Campus IT Services (personal communications 23rd, May 2014) [2]
- A. Edwards-Henry, D. Thurab-Nkhosi, and A.Wood-Jackson. "Quality Assurance in Only earning at the University of the West [3] Indies: A Baseline Survey of Online Courses". The Fourth Pan-Commonwealth Fe Oi Learning (PCF4). 2006. Accessed on May 28th, 2014 from <u>http://pcf4.dec.uwi.edu/viewrecord.php?id=160</u>
- [4] M. Rosenberg. E-learning: Strategies for delivering knowledge in the digital age ork : McGraw-Hill. 2001.
- [5] F. Umrani-Khan and Sridhar Iyer. "A Model for Acceptance and Use of E-lear by Teachers and Students." Proceedings of the Fourth International Conference on E-Learning, 2009, 475-485.
- D. Garrison, and N. Vaughan. Blended Learning in Higher Education . San France Isco: Jossey-Bass. 2008. [6]
- D. Garrison, and N. Vaughan. Blended Learning in Figure 2006 B. Hawkins, and J. Rudy. Educause core data service: Fiscal year 2006 I. B. Welker " A Longitudinal Perspective A [7] mmary report. Boulder, CO: Educause. 2007
- adding the Use of VLEs by Higher Education Institutions in [8] No 2, pp 177-192. the United Kingdom" Interactive Learning Environments 2006,
- The physical education: a national Technology, 2006, 37: 617–632. [9] A. Thomas and G. Stratton. What we are really doing with ICT sysical education: a national audit of equipment, use, teacher attitudes, support, and training. British Journal of Education
- [10] W. Wang and Chun-Chieh Wang. "An Empirical Studyactor Adoption of Web-based Learning Systems." Computers & Education, 2009, 53 (3) (November): 761-774.
- [11] R. Lukman and Majda Krajnc.. "Exploring Non-tr fith nal Learning Methods in Virtual and Real-world Environments" Educational Technology & Society, 2012, 15 (1): 237-247.
- P. Moule. Communities of practice: can the [12] p in on-line learning? In: BERA Annual Conference, Heriot-Wat University, Edinburgh, Scotland, 10 September 2
- itudes to the application of a Web-based learning system in a microbiology course. [13] I. Masiello, R. Ramberg and K. Lonka Computers and Education, 2005, 1-185. 5(2).
- nd F. Davis. "User Acceptance of Information Technology: owards a Unified View." MIS [14] V. Venkatesh, M. Morris, G. Da Quarterly, 2003, 27 (3) (Se 425-478.
- symprceived ease of use and user acceptance of information technology. MIS Quarterly, 1989, 13(3). F. Davis. Perceived use [15] 319-340
- ned Behavior." Organizational Behavior and Human Decision Processes, 1991, 50 (2) (December): [16] I. Ajzen. "The Theo 179-211.
- [17] al Statistics in Psychology and Education (New York). McGraw Hill. 1965. I Cujeford F

MUN