
Cross Language Higher Level Clone Detection-
Between Two Different Object Oriented 
Programming Language Source Codes 

1K. Vidhya, 2N. Sumathi, 3D. Ramya, 

1, 2 Assistant Professor 3 PG Student, 
Dept. of C.S.E, Dr. MCET, Pollachi, Tamil Nadu, India 

Abstract— Similar type of source codes or repetition of source codes in the software is known code clones. 
Clone detection technique is capable of identifying the similar type of source codes present in software 
applications. These code clones increases the fault and maintenance cost. New source codes obtained from 
another source code without any proper changes lead to error. Detection of code clones help in reducing 
the software maintenance and plagiarism detection. Some of the clone detection techniques are token 
based approach, tree based method, etc. But, the process involved in them are very multifaceted and also 
identifies only lower level clones of same programming language source code. The system mainly focuses 
on higher level (Method, File, and Directory) clone detection in different programming language source 
code called cross language higher level clone detection. The metric based approach helps to reduce the 
computational cost in terms of resources and time with high precision. This cross language clone detection 
increases the interest in multiple languages. Clone detection results can be measured using precision and 
recall. 

Keywords— Higher level code clone; metric values; high precision

I. Introduction

Clone detection is a major phenomenon used in the field of software engineering to find clones. Clone 
detection approach helps to find the duplication of programming language source codes that are widely 
used. The source code that occurs more than once across different programs of the same entity are called 
code clones [1]. Code clones in the software system may introduce bugs resulting in the decrease of 
understandability in code snippets [2]. Error containing source codes or inconsistent source codes when 
extended will increase the effort of modification. There are lots of reasons for the occurrence of clones. 
Copy paste method is the way of copying source code from the existing methods and reusing it with some 
modifications. This method is the major reason for producing clones in software. This method increases the 
maintenance cost due to inconsistent changes in various copies of the source code [3]. Plagiarism is another 
reason for clones. As the requirement is growing day by day coding is becoming larger and complex. 
Extensive software systems are pricey to build and, are even more costly to maintain. Sometimes, 
developers take uncomplicated way of implementation by copying   some fragments of the existing 
programs and use that code in their work. This type of work is called code cloning [20][19]. 

Simple clones are identical programming language source codes with minor modifications like variable 
renaming and variation in literals. Continuous occurrence of simple clones with minor modifications 
between two or more source codes may lead to method level or file level called higher level clones [2]. The 
methods are extracted from a file and  metric values are  calculated and compared  for different source 
codes and which  are similar  termed as method level clones. File level clones are identical source codes 
present in two different files. The method level and file level clone detection is mainly for reducing the 
deviation of the source code and also for improving the source code quality. These clone detection 
techniques are used in various fields such as software evolution analysis, detecting bugs and copyright 
infringement investigation [17]. In general, there are two ways of identifying the similarity between source 



code segments: textual and functional similarity [10]. Textual similarity finds the code fragments that are 
exactly the same based on the content (text) with minimum modifications. Copy paste method comes 
under textual similarity. Two source code fragments identical based on the similar pre and post conditions 
are referred as functional similarity [20]. There are four types of code clones in software. They are type-1, 
type- 2, type-3, and type-4. They are defined as follows: 

Type-1: Two code fragments identical but with some modification like comments, whitespace. 
Type-2: Two code fragments similar based on syntax with little difference in identifiers, literals and layouts. 
Type-3: Identical code segments with few variations in types, comments, adding or removing statements in 
the source code. 
Type-4: Similar type of code fragments, with different implementation procedures followed [20]. 

In the above types of clones defined, the first three types come under the category of textual similarity and 
type-4 clone belong to functional similarity. The metric based approach is used to detect higher level clones 
present in cross language platform such as Java and C++. This approach indirectly identifies the similar type 
of programming language source codes. The source code similarity can be identified or detecting clones 
using metrics. Metric based technique is used for finding clones much easier and also this technique yields 
high precision and recall. Metrics are individually calculated for both methods and files. This technique is 
calculating metric values for identifying similar type of source codes across different files. These metric 
values are calculated using computed metrics. 

These metric values are compared to find clones, instead of comparing source code directly. In case of 
direct comparison (Line by line comparison) of source codes, it is difficult and also takes long time to find 
clones in source code. This approach can support different type of programming language source code 
clone detection. The overall system architecture of higher level clone detection is shown in Fig. 1. 

In metric based technique, compares two different source code metric values such as method level metric 
values for method level clone detection. Matches between different source code metric values to be satisfied 
with the threshold value considered as method level clones. Likewise file level clone detection can be done 
using file level metrics. 

Fig. 1. System architecture 

The clone relations are referred using the terms such as clone pair and clone cluster. Clone pairs indicate 
that two different code fragments or segments are identical to each other. A large number of code segments 
forming a pair of identical code fragments are referred as clone cluster [2]. All clones grouped under the 
same domain are called clone class family, otherwise it is known called super clone [17]. 



Generally clones are broadly classified into two categories: namely exact clones and near-miss clones [2]. 
Exact clone or type-1 clone is defined as two or more code fragments that are identical in nature with a 
small variation in blank space, new line and adding or removing tabs [17]. Type-2 and type-3 clones may be 
termed as near miss clones. Earlier papers dealt with the clone detection in single programming language 
source code. The widely increased usage of the source codes need a cross language clone detector which is 
proposed in this paper. 

II. Process of Clone Detection 

The clone detection process helps to detect higher level clones. Comparison of two or more code fragments 
takes place for finding similarity between the source codes. The identical code fragments and identical files 
are concluded as clones [7, 2, 10]. 

Metrics are classified as method level and file level metrics. The following method level metrics computed 
for source codes are: 

1. Number of lines of code  
2. Number of arguments passed  
3. Number of function calls  
4. Number of local variables  
5. Number of conditional statements  
6. Number of looping statements  
7. Number of return statements  
8. Number of assignment statements  

The following shows of metrics that are computed for source codes are[19]: 

1. Number of lines of code  
2. Number of variables declared  
3. Number of methods defined 
4. Number of function calls  
5. Sequence of function calls  

A. Input selection 

Fig. 2 shows the input source code that is taken for clone detection. Select two different object oriented 
programming language source code such as Java and C++ for preprocessing. The input source code can be 
extracted from software component finder and source code repository. Same source code should be selected 
for both Java and C++ programming language. 

Fig. 2. Input file 



B. Pre-processing the Source Code

The screen shot of source code preprocessing is shown in Fig. 3. Selected source code should be normalized. 
Normalization is the removal of header files, removal of blank lines, removal of whitespaces and removal of 
single and multiple comment lines. This pre-processing step is most important for every source code helps 
to remove unnecessary lines [10].This step reduces the number of lines of source code and make the source 
to standardized format. 

Fig. 3. Source code preprocessing 

C. Intermediate Form (IR) / Template conversion 

Fig. 4. shows the template conversion of different programming language source code. After preprocessing 
step, convert the source code into intermediate form. Each line of source code can be converted into tokens 
to make template conversion easier. 

Fig. 4. Template Conversion 

D. Method Extraction 

The methods are extracted after template conversion. Each and every method is individually extracted from 
both Java and C++ files. This step is mainly focus on methods alone and avoids remaining lines of source 
code. The methods are only used to calculate method level metric values 



E. Metric value Calculation 

Fig. 5. and Fig. 6. listed the calculated metrics values for both Java and C++ source code. Source code 
metrics are computed for calculating metric values. 

Fig. 5. Method level metrics 

File level and method level metrics are listed in section1.The metric values are calculated for different 
methods and files. The metric values are generated after the template conversion. This approach helps to 
detect higher level clones easier. 

Fig. 6. File level metrics 

Few examples for template conversion is renaming variable, renaming of data type etc. This step is carried 
out for each and every line of source code. This Java and C++ template mainly helps for comparison of two 
different programming language source code easier [20] [8]. 

F. Identify Matches 

The percentage of method level and file level clone detection to be displayed in the Fig. 7. The metric values 
are compared for finding similarity between the source code. Java source code metric values are compared 
with C++ metric values for both method level and file level clone detection [18]. Finally aggregate the 
matches (identical code fragment) metric values between two different programming language source 
codes. The aggregation of similar metric values is done based on the threshold value defined by the user 
and the clone is detected. 



III. Result 

The metric values of Java and C++ codes are calculated using the above proposed technique. All the metric 
values are obtained. The difference between each metric values of both Java and C++ are obtained for each 
metrics listed in the Section I. The average of the metrics is calculated. A threshold is set and the presence 
of exact and near miss clone is detected accordingly. 

Fig. 7. Clone detection 

The clones are classified based on the threshold value as shown in the Table I 

Table I: Clones classified based on threshold value 

Average (%) Existence of Clones
>=90 Exact Clone
>=70 Near miss Clone
<=69 No Clone

IV. Conclusion 

This metric based technique helps to identify higher level clones in source codes. Additionally in the latter 
stage the textual comparison of the converted template of the source code is also employed. This type of 
comparison increases the performance of clone detection measure such as high precision and recall. This 
clone detection approach also reduces the computational overhead. The file level clone between two 
different language source codes detected with a higher accuracy. 

The proposed cross language clone detection approach reduces the time complexity compared to the direct 
Comparison approach and also increases the importance in multiple programming languages. This work   
may be extended by developing a generic tool which accepts source codes of any language for clone 
detection and also can go for next higher level detection. 

References 

1. Balint, Mihai, Tudor Girba and Radu Marinescu,”How developers copy”. Program Comprehension, 
ICPC    14thIEEE International Conference, pp.56-58, 2006 

2. Basit, Hamid Abdul and Stan Jarzabek, "A Data Mining Approach for Detecting Higher-level Clones 
in Software." , Software Engineering IEEE Transactions, Vol.35.4, pp. 497-514, 2009  

3. Devi, D. Gayathri, and M. Punithavalli, ”Detecting Software clones using Association rule mining”., 
International Journal of Advanced  Technology & Engineering Research (IJATER) Volume 3,  Jan. 
2013  

4. Gayathri Devi G , Dr. M. Punithavalli “ Comparison and Evaluation On Metrics Based Approach For 
Detecting Code Clones” Indian Journal of Computer Science and Engineering (IJCSE) Vol. 2 No. 5 
Oct-Nov 2011  



5. Gehan M. K. Selim ,King Chun Foo, Ying Zou “Enhancing Source-Based Clone Detection Using 
Intermediate Representation” 17th Working Conference on Reverse Engineering, 2010 

6. Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H. Pham, Jafar Al-Kofahi, and Tien N. Nguyen 
“Clone  Management for Evolving Software” IEEE Transactions On Software Engineering, Vol. 38, 
No. 5,  September/October 2012 

7. Geiger, Reto, et al, ”Relation of code clones and change couplings (2006).”, Fundamental 
Approaches to Software Engineering. Springer Berlin Heidelberg, pp.411-425, 2006  

8. Kanika Raheja and Rajkumar Tekchandani,”An Emerging Approach towards Code Clone Detection: 
Metric Based Approach on Byte Code”, International Journal of Advanced Research in Computer 
Science and Software Engineering, Volume 3, pp.881-888.  

9. Kaur, prabhjot, harpreet kaur and rupinder kaur, “Comparison of clone detection tools : CONQAT 
and solid SDD”, International journal 2.5, 2012  

10. Kodhai, Perumal, and Kanmani, “Clone Detection using Textual and Metric Analysis to figure out 
all Types of Clones”, International Journal of Computer Communication and Information System 
(IJCCIS), Vol2. No1, pp. 99-103, 2010  

11. Kodhai .E, Kanmani .S, Kamatchi .A, Radhika .R, Detection of Type-1 and Type-2 Clone Using 
Textual Analysis and Metrics in ITC, 2010 

12. Krinke ,J., “Identifying Similar Code with Program Dependence Graphs,” in Proceedings of the 8th

Working Conference of Reverse Engineering, pp.301- 309, Stuttgart, Germany, October 2001. 
13. Lanubile .F, Mallardo. T., “Finding Function Clones in Web Applications” Proceedings of the 

Seventh European Conference On Software Maintenance And Reengineering (CSMR’03), 2003. 
14. Mayrand, J., C. Leblanc and E. Merlo, “Experiment on the Automatic Detection of Function Clones 

in a Software System Using Metrics,” in Proceedings of the 12th International Conference on 
Software Maintenance (ICSM’96), pp. 244–253, Monterey, CA, USA, November 1996 

15. Merlo, E., “Detection of Plagiarism in University Projects Using Metrics based Spectral Similarity,” 
in the Dagstuhl Seminar: Duplication, Redundancy, and Similarity in Software, 2007. 

16. Nicholas A. Kraft, Brandon W. Bonds, and Randy K. Smith, “Cross language clone detection”, SEKE, 
pp. 54-59, 2008  

17. Roy, chanchal Kumar, and james R. Cordy., ”A Survey on software clone detection research”, 
Technical report 541,Queen’s university at Kingston 2007   

18. Rysselberghe, Filip Van, and Serge Demeyer "Evaluating Clone Detection Techniques from a 
Refactoring Perspective." 19th IEEE international conference on Automated software engineering, 
IEEE Computer Society, pp. 336-339, 2004.  

19. Vidhya .K, Thirukumar .K., “Identifying Functional Clones Between Java Directories Using Metric 
Based System” , International Journal of Advanced Research in Computer Science and Software 
Engineering Volume 3, pp. 1255-1261, 2013  

20. Vidhya .K and Thirukumar .K, “Detecting Functional Similarity between Java Files using metrics” 
IRACST - International Journal of Computer Science and Information Technology & Security 
(IJCSITS), Vol. 3, No.4, pp. 290-296 , 2013 


