Optimal Switching Strategy of Level shifted Carrier based PWM Technique for Asymmetric Multilevel Inverter

J. Gayathri Monicka, Dr. V. Jamuna

Jerusalem College of Engineering, Chennai

Abstract- This paper present the optimal switching strategy for Asymmetric cascaded multi (ACMLI) to drive a Brushless DC motor. Multicarrier strategy introduced for the multilevel more popular due to reduced cost, lower harmonic distortion & higher voltage capability a compared to conventional switching strategy applied to inverters. A new family of multilevel in with decreased number of separate DC sources has emerged named as ternary multilevel inver 'An assortment of topologies and modulation strategies has been reported for utility & drive application Mons. Phase Disposition modulation techniques are proposed to investigate the performance of asymptetric cascaded multilevel inverter. Feasibility of the proposed approach and the results are verified through Mat lab simulations and experimental results. Proposed modulation technique can easily be extend to three phase. A prototype of Asymmetric cascaded multilevel inverter is developed, using AR Cortex[™]-M0 Core (NUC140XXCN) controller to verify the theoretical and simulation results.

I. Introduction

Recently, Multilevel inverter finds applications mainly in adustries such as Brushless DC motor, AC power supplies, renewable energy sources, drive systems, et he multilevel inverter has introduced the solution to increase the converter output voltage above the longe limits of classical semiconductors. A new hybrid asymmetric multilevel inverter is introduced for 27 levels with minimum number of switches. This achieves a better sinusoidal output [1]. One of the significant advantages of multilevel configuration is the harmonic reduction in the output waveform without mcreasing switching frequency or decreasing the inverter power output [2]. An assortment of modulation strategies has been introduced for the cascaded multi-level inverters to reduce the harmonic concents further [3]. Of all the topologies Cascaded has many advantages than diode clamped and capacitor clamped inverter. Further studies on cascaded multilevel inverters were performed to highlight the intage of cascaded multilevel inverter and the switching patterns are soidal PWM modulation was introduced in an attempt to reduce the analysed. The concept of whout voltage Level shifting is an emerging modulation and control technique. It harmonic contents at the gives better result compared with the phase shifting technique. Level shifting is done to reduce the harmonics at the output voltage. This paper investigates a control technique applied to the ternary d multi-level inverter to ensure an efficient voltage utilization and better harmonic asymmetric spectrun

Ternary Asymmetric Cascaded Multilevel Inverter

The structure introduced in this work is a ternary asymmetric cascaded multilevel inverter, which uses unequal DC Sources. The general function of this multilevel inverter is the same as that of the other two inverters. The multilevel inverter using Asymmetric cascaded-inverter provides a large number of output voltage levels without increasing the number of full bridge units. This configuration provides higher voltage at higher modulation frequency due to which the topology can be employed for high power applications. Due to the reduction in the number of DC sources employed, the structure becomes more reliable and the output voltage has higher resolution due to increased number of steps. This configuration recently becomes

II.

very popular in AC power supply and adjustable speed drive applications. An asymmetric cascaded Hbridge inverter circuit is shown in Figure. 1.

In this proposed model ternary DC voltages progressions of unequal DC sources of ACMLI are used. This is most popular of unequal voltage progression with amplitude of DC voltage having ratio 1:3:9:27;81....3N and the maximum output voltage reach to $((3N-1)/2) V_{dc}$. ACHB consist of 3-bridges is used to generate 27 level output for the DC Sources of 9:3:1 ratio. The output waveform 27 levels as $\pm 13Vdc$ $\pm 1Vdc$ and zero. By different combinations of the 12 switches, S1-S12, each inverter level can generate three different voltage outputs, $+V_{dc}$, $-V_{dc}$ and zero. Let the output of H bridge-1 is denoted as V₁(t), the output of H bridge-3 is denoted as V₃(t).Hence the output voltage is given by

III. Iticarrier Based PWM Methods

Pulse Width Modulation refers to a method of carrying information on a train of pulses, the information is encoded in the width of each pulse. This technique helps in maintaining a constant voltage. In the carrier-based multilevel modulation, each level in a phase requires a carrier of its own. Carrier-based modulation schemes are mainly divided into two categories: level-shifted (LSPWM) and phase-

shifted (PSPWM) methods. Both of these have several variations, which differ by the allocation of module carriers with respect to each other [4]. In all level-shifted PWM methods, the carriers of the modules have a frequency of $f_{car} = 1/T_{SW}$ where the frequency of the carrier signal is inversely proportional to the switching period of the device (The range of the f car is selected between 10 kHz to 100 kHz). The reference voltage, on the other hand, can have values of the range -MVdc and MVdc. To cover the whole voltage range, the carriers are the triangular waves with same phase and peak to peak amplitude and arranged vertically, so that the carrier of the first module covers the range from zero to Vdc, while the second covers the range from Vdc to 2Vdc. The last module covers the voltage from (M-1) Vdc to MVdc. This method is generally used in CMLI as it gives reduced THD [5]. Therefore, an inverter w modules in series is usually referred to as an *n*-level inverter and the number of levels can be ated calcu as given in Eq. (2). (2)

In the phase disposition (PD), all the carriers are in phase across all the bands. gives rise to the lowest harmonic in the higher modulation indices, when compared to the other disco tion methods. The level shifted multicarrier modulation offers better harmonic attenuation, but so offers an unequal device condition.

Figure .3 Subsystem - PD modulation for positive half cycle

IV. **Results and Discussion**

The feasibility of the proposed PWM strategy has been investigated and verified through simulation results, for both multilevel inverter and multi carrier PWM inverter, ternary asymmetric cascaded

multilevel inverter. The proposed technique for a twenty seven levels inverter with asymmetric DC sources involves the usage of only three DC cells. The voltages are given in the ratio of 9:3:1 with which a twenty seven level can be achieved with only three DC sources. The simulink model for an asymmetric multicarrier PWM MLI is shown in Fig. 2 they are created with a separate subsystem. The pulses are generated with the developed pattern and given to the corresponding switches via the subsystems. Higher the level, the harmonics are reduced to greater extent. To determine the harmonics in the proposed circuit, the FFT analysis is performed .Modulation technique is the logical extension of the sine triangle PWM multilevel inverter, in which n-1 carriers are needed for an n-level inverter. The preferred type is Phase disposition. The carriers are arranged in vertical shifts in continuous bands defined by the levels of the inverter. Each carrier has the same frequency and amplitude, the switching pattern and the varier arrangements are shown in Fig.4 (a).

An n-level inverter using level shifted multicarrier modulation scheme requires (n-1) trianquart arriers, all having same frequency and peak to peak amplitude, hence for 27-level inverter, 26 cirriers are used. The modulated output for the PD multicarrier PWM 27 level multilevel inverter is shown in Fig. 4(b). Modulation is generally performed in any circuit to reduce the harmonic content at the output voltage. The harmonic content after modulation is analyzed by the FFT spectrum shown in Fig. 4(c). It is clear from the FFT analysis that the harmonics are reduced to a greater extent after modulation. To perform the other modulations with the same circuit the variations are only with the multicarrier that have been generated. The only difference is with the carriers that has been generated inside the subsystems for both positive and negative cycles. The main circuit model remains the same for the other two modulations. But only the subsystem varies with this. It is found that THD is considerative reduced after modulation is being performed. From the simulation work it is known that the PD technique produces lesser harmonic on a line-to-line basis compared to the other two techniques because it puts harmonic energy directly into a common mode carrier component which cancels across the the-to-line outputs.

To validate the proposed concept, the inverter is informented and its prototype has been manufactured. The power supply circuit comprises of a step down mansformer and a voltage regulator IC 7805 and 7812, which provides the DC voltage to the controller and the driver circuit. ARM[®] Cortex[™]-MO Core NUC140XXCN microcontroller is used to provide the driving pulses because of its superior features like

- I. Meeting the computing needs on the task on hand efficiently and cost effectively.
- II. The NuMicro[™] NUC100 Series is 32-bit microcontrollers with embedded ARM[®] Cortex[™]-M0 core the cost is equivalent to reditional 8-bit microcontroller
- III. Wide availability and reliable sources

The control circuit decides the sequence of pulses to be given to the switches in the power circuit. The driver circuit amplifies the pulses to the required level. The driver circuit is used for an isolation of the negative current to the micro-controller, amplification of voltage and to create a constant voltage source. A cated using 12 MOSFETs (IRF540), and it requires three individual DC sources of an power circuit is tabl asymmetric te pary ratio. As per the switching sequence presented in Table 1, the pulse signals generated by taking compatition and applied to the MOSFET switches, using the micro-controller. MOSFET with anties are employed as switching devices. The opto coupler used for high side switch is 6N137, paralle an optically coupled gate that combines a gallium-arsenide infrared-emitting diode and an ted high gain photo detector. For low side switch MCT2E is used .Optocoupler circuit provides isolation between the control circuit and the power converter circuit. During the hardware implementation, the inverter is tested for 52V. Each inverter leg takes different voltages. During the implementation, the inverter input sources are taken as $V_{dc1} = 4 V$, $V_{dc2} = 12V$ and $V_{dc3} = 36V$ with switching frequency f = 50 Hz. As illustrated, the experimental setup is built for the generation of desired output voltage waveform. In order to reach the level, 3 unequal DC sources along with 12 switches are used. Fig. 5(a) and (b) depicts the experimental waveform of the inverter to generate driving pulses for the switches and the output voltage waveform of three bridges respectively. The output voltages with twenty seven-level stepped waveform can

be clearly appreciated; with low distortion. The hardware result obtained using arm processor is found to be in agreement with the simulation results.

V. conclusion

Optimal switching strategy of multicarrier PWM for Aybrid Asymmetric Multi Level Inverter has been presented. Simulink models for PD modulation are existented. The proposed strategy is so simple that it can be implemented even with few analog circuits. Also, the behavior of hybrid multi level inverter is presented with and without implementing Multicarrier strategy. Asymmetric MLI Topology uses reduced number of DC sources thus decreasing the complexity and the cost of the circuit. Moreover, this approach enables to obtain a twenty seven-level conversion with only three dc bus levels. This reduces the cost and offers the more number of levels at the output with a least number of primary devices and DC voltage sources. The results for both of the techniques are then compared against various performance indices. From the comparison, it is observed the THD obtained with MCPWM Inverter is comparatively lesser than the MLI. By increasing the number of sceps, waveform approaches the desired sinusoidal shape and THD is reduced to IEEE standard. Proposed work can be extended to three phase and the same can be realized in hardware to drive high power motes such as PMBLDC motors and so on.

References

1. Harva Belkamel, Saad Mekhilef, Ammar Masaoud, and Mohsen, "Novel three-phase asymmetrical casaded multilevel voltage source inverter," IET Power Electron., vol. 6, pp.1696–1706, 2013.

A Ajami, Ataollah Mokhberdoran, and Mohammad Reza Jannati Oskuee, "A New Topology of Multilevel Voltage Source Inverter to Minimize the Number of Circuit Devices and Maximize the Number of Output Voltage Levels," J Electr. Eng. Technol., vol. 8, pp.1328-1336, 2013.

- Khoucha F, Lagoun, M. S, Kheloui, A, El Hachemi and Benbouzid, M, "A comparison of symmetrical and asymmetrical three-phase H-bridge multilevel inverter for DTC induction motor drives," IEEE Trans. Ind.Electron., vol 26, pp.64–72,2011.
- 4. Colak I, Kabalci E, and Bayindir R, "Review of multilevel voltage source inverter topologies and control schemes," Energy Convers. Manage, vol.52, pp.1114–1128, 2011.
- 5. Rodriguez J, Jih-Sheng L and Fang Zheng P, "Multilevel inverters: a survey of topologies, controls, and applications," IEEE Trans. Ind.Electron., vol.49, pp.724–738, 2002.