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1. INTRODUCTION AND PRELIMINARIES

In 1970, Levine [6] first considered the conceot of generalized closed (briefly, g-closed) sets were defined and investigated. Arya and

Nour [2] defined generalized semi open (briefly, gs-open) sets using semi open sets. Veerakumar [11], S. Yuksel and Becern [12], A.
. . 9" 8* 8 . , sots B9

Acikgoz [1] introduced -closed set, - sets and - closed sets respectively. We introduced a new class of sets ~closed

sets and study their simple properties.

fv Y v \ - \ oo
X,7),(Y,0) and (Z,7n) (or X,Y. 2 . . . .
’ - represents topological spaces on which no seperaxion axioms are
g
PR
X

'Y \ ~
) cl(A), int(A) and A (or X
. . . ,TH A), iNl(A)and A" (or A
assumed unless otherwise mentioned. For a subset A of a space ™ e HEAE .

Throughout this paper

= “J Jenote the closure of A,

the interior of A and the complement of A in X, respectively.
o . A . (v -\ .
Definition: 1.1 A subset A of a topological space \X. 7J is called:

o preopen[8) A S int(ci(4)),
e emicpen[3]AC cl(int(4) ),
po(X) (resp.so(X)

The family of all preopen sets (resp. semi open sets) in X will be denoted by . A semi closure (resp. pre closure)

of a subset A of X denoted by SC{A] (resp.pCl(A)) is defined to be the intersection of all semi closed (resp. pre closed) sets
containing A. A semi interior (resp. pre interior) of a subset X denoted by ¥ #1E(A]) (resp. ¥ inE(A]} is defined to the union of all

semi open (resp. pre open) sets contained in A.

Definition: 1.2 A subset A of a topological space (X, 7) s called:

. . oml AN 17 iCcyU . . (Y =)

e ageneralized closed set (briefly g-closed) [6] if “¢13 ) E Uwhenever # =¥ and U is open in . T/
orl (A 7 1CU . - (¥ )
e a  -closed[11]if%(a) S Uwhenever & = ¥ and U is g-open set in WAL T }
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® a  closed[2] ifsel(A)
The complements of above sets are called their respective open sets.
Definition: 1.3 A subset A of a space iscalleda  -set[12]if where U is open and
Definition: 1.4 A subset A of a space is called a -closed set [1] if whenever and Uis  -setin X.
2. -Closed Set
Definition: 2.1. A subset A of a space is called -closed set if C U whenever C U andUisa -open in X.
Definition: 2.2. A subset A of a space is called -closed set if C U whenever C U and Uisa -open in
X.
Definition: 2.3. A subset A of a space is called -closed set if C U whenever CU andUiisa -open in
X.
Theorem: 2.4. Let be a topological space. Then we have
-closed set.
cU.

®  Every closed setis a
®  Every -closed setisa -closed set.
and U be a -open set such that C U . Since Ais closed, cl (A) = A, So

Proof: (i) Let A be a closed set in
-open set, So U is an

-closed set in
and C U where U is -open set. Since every open set is a

Hence A is

-closed set in
-closed set, we obtain that C U henceAisa g-closed set of

(ii) Let A be a
open set of Since A is a
Remark: 2.5. The converse of the above theorem need not be true as seen from the following examples.
and . Then the subset is a
-- closed set.

Example: 2.6. Let

-closed set, but it is not a closed set.

Example: 2.7. Let X = a,b,c}and 7= {(0,{C}, X}. Then subset A ={a}isa g-closed set, but it is not a

Theorem: 2.8. Let (X , 7 )bea topological space. Then we have

- closed set

- closed set is a
- closed set

- closed set is a

®  Every
Proof: (i) Assume that A is a ﬂ*g*— closed set in (X ,7T) and A C U where Uis a ﬂ*g— open set. We have

®  Every

pCl(A) c cl(A) c U . Therefore pCl(A) C U .Hence A is
- open set. We have scl(A) ccl(A)cU

aﬂ*g* p - closed setin (X |, T)
~closed setin (X ,T)and A C U where U isa

(ii) Assume that A is a
. Therefore SCI(A) C U . Hence A is

a ﬂ*g* S - closed setin (X , 7).
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Example: 2.9. Let X ={a,b,c,d} andt = {0, {a},{b,c},{a,b,c}, X}. Then the subset A = {b} is a f*g*p-closed set, but it is
not a 8 g*-closed set.

Example: 2.10. Let X ={a,b,c,d} andt = {0, {a},{b,c},{a,b,c}, X}. Then the subset A = {b, c} isa f*g*s-closed set, but it
is not a % g*-closed set.

Theorem: 2.11. Let (X, T) be a topological space. Then we have

®  Every f"g"p- closed set is a gp-closed set.
®  Every f7g"s-closed set is a gs-closed set.

Proof: (i) Assume that A isa B*g*p - closed set of (X , 7). Let A C U where U isa ﬁy g- open set. Since every open set is a
B g™-open set. Since A is a f*g*p ~closed set, Therefore pCl(A) c U . Hence A isagp-closed set of (X, T).

(ii) Assume that A is af*g*s - closed set of (X ,T). Let A S U where Uis a B*g* open set. Since every open set is a
B*g" —open set. Since Aisa " g"s -closed set, Therefore scl(A) c U . Hence A is a gs-closed set of (X, 7).

Remark: 2.12. The converse of the above theorem need not be true as seen from the following examples.

Example: 2.13. Let X ={a,b,c,d} andt = {0, {a},{d},{a,d},{a,b,d}, X}. Then the subset A = {b,d} is a gp-closed set, but
itisnota B*g*p -closed set.

Example: 2.14. Let X ={a,b,c,d} andt = {9, {a},{b,c},{a,b, C}X}. Then the subset A = {c} is a gs-closed set, but it is not a
B*g*s -closed set.

Theorem: 2.15. Let (X ,7 ) bea topological space. Then we have

®  Every f*g" —closed set is a gp-closed set
®  Every f*g" —closed setisa gs-closed set

Proof: (i) Assume that A isa f*g*- closed set of (X , 7). Let A C U where Uis a f*g*- open set. Since every open set is a
B g —open, we have pCl(A) C U .Hence A isagp -closed set of (X , 7).

(ii) Assume that A isa B*g* —closed set of ( X ,T). Let A C U where U is a f*g*- open set. Since every open setisa f*g"—
open, we have scl(A) c U . Hence A isags -closedsetof (X , 7).

Remark: 2.16. The converse of the above theorem need not be true as seen from the following examples.

Example: 2.17. Let X ={a,b,c,d} and T = {9, {b},{b,c,d}, X}. Then the subset A = {d} is a gp -closed set, but it is not a
B*g*-closed set.

Example: 2.18. Let X ={ab,c,d} and 7= {0, {b},{b,c,d}, X}. Then the subset A = {c} is a gs -closed set, but it is not a
B*g*-closed set.

Remark: 2.19. A ﬁ* - Set is independent from 3" g*-closed set as it can be seen from the next two examples.

Example: 2.20. Let X = {a, b, ¢, d} andt = {@,{a},{c}, {a, b},{a,c},{a, b, c}, X}. Then the subset A = {a} isa f*-set, but it is
nota 3*g* -closed set.

Example: 2.21. Let X = {a, b, ¢, d} andt = {@,{a},{c},{a, b}, {a, c},{a,b,c},X}. Then the subset A = {a,b,d} isa B*g*-

closed set, but it isnota * -set.

Theorem: 2.22.If A and B are f*g*-closed, then A U B is a B* g*-closed set.
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Proof: Let A and B are 8*g*-closed sets in X. Let U be ﬁ*g—open setin X suchtht AUB CU . Then ACU and BC U
Since A and B are B*g-closed sets. cl(A) U andcl(B) cU . Hence cl(AU B) =cl(A)Ucl(B) C U. Therefore
AU B is B*g*-closed set whenever A and B are B* g*-closed sct.

Remark: 2.23. The finite intersection of two B*g*-closed sets need not be B*g*-closed set.

Example: 2.24. Let X ={ab,c,de}and T = {0, {a}, {b},{a, b}, X}. Then the subset A ={a,b,c} and {a,b,d} are f*g*-
closed sets, but {a,b,c}N{a,b,d} = {a, b} isnotaf*g*-closed set.

Theorem: 2.25. If AC B C cl(A) and Aisa B*g*-closed subset of (X , T ), then Bis also a f* g*-closed subset of ( X , T ).

Proof: Let U be a " g-open subset, such that AcC BcU, Since Ais B*g*closed subset of (X ,T). cl(A)c U, by
hypothesis Ac Bccl(A), cl(A)=cl(B) . Hence cl(B) € U whenever B € U, Therefore Bis f*g*-closed subset of (
X ,7).

Theorem: 2.26. For any topological space ( X ,7), every singleton {x}ofXisa B g-open set.

Proof: Let x € X. Let {x} € 7, then {x} is a ﬁ*g—open set. If {x}& 7, then int({x}) = ¢ = cl(int({x})), so {x}isa ﬁ*g—open

set.

Theorem: 2.27. A subset A of Xis *g”-closed set in X if and only if cl(A) — A Contains no nonempty f”g-closed set in X.

Proof: Suppose that F is a nonempty 5* g-closed subset of cl(A)—A NowF ccl(A)—A. Fccl(A)n A° . Therefore
Fccl(A) and F C A° . Since Fis B g-open such that AcC Ffand Ais B*g*-closed, cl(A) C Fe ie FC Cl(A)C .
Hence F' C cl(A)N[cl(A)]° = ¢ e, F = ¢ . Thus ¢I(A) — A contains no nonempty *g”-closed set.

Conversely, Assume that cl(A) — A contains no nonempty B g-closed set. Let AcU, U is B g-open. Suppose that cl(A) is

not contained in U. Then ¢l(A) N U"is a nonempty f5* g-closed set and contained ¢ [(A) — A which is contradiction. Therefore
cl(A) € U and hence A is B*g-closed set.
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