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Abstract: The classical back propagation algorithm is the popular algorithm used for the supervised training of Neural Networks. Further several 
second order optimization algorithms like the conjugate gradient, the Levenberg-Marquardt and Bayesian learning algorithms have also been developed 
which can be used along with back propagation algorithm for optimization of learning or accuracy. This paper explores the potential usage of the 
different algorithms for different applications. 
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I. INTRODUCTION 

In Artificial Neural Networks the back propagation algorithm is widely used for supervised learning. Back Propagation Algorithm is the 
training or learning algorithm which is an abbreviation for "backward propagation of errors” is a common method of training the 
artificial neural networks. Generally in supervised learning the following steps are performed. 

1. The network is initialized with random weights. The weight may be small random numbers – say between –1 and +1.  
2. The input pattern is applied which are multiplied by the weights added for all the neurons in the layer. 
3. The output of the layer is computed by multiplying the activation function. This is called the forward pass.  
4. The output may be completely different to the Target since all the weights are random. So calculate the Error of each neuron, 

which is essentially: Target – Actual Output. 
5. This error is then back propagated to update the weights such that the error becomes smaller. In other words, the Output of 

each neuron will get closer to its Target. This process is called the reverse pass. 
6. This process is repeated again and again until the error is minimized and within the prescribed tolerance. 
7. Thus the network keeps training all the input patterns repeatedly until the total error falls to some pre-determined low target 

value and then it stops. 

The goal of any supervised learning algorithm is to find a function that best maps a set of inputs to its correct output. 

II. Survey 

The potential of using a neural network model for estimating the lines of code was examined by K.K. Aggarwal, et al [1]. They 
employed multiple training algorithms listed in table 1 [1] 
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Table 
1: Different learning algorithms [1]. 

Mean absolute Percentage Error (MAPE) was chosen as a metric by them [1]. 

 
They tested the performance of all the algorithms mentioned in Table 1 and confirmed that the network trained by Bayesian 
Regulation algorithm offers the lowest MAPE. Gradient descent and Resilient Back propagation algorithms are in the next level Ozgur 
and Erdal Uncuoglu conducted a comparative study on the Levenberg-Marquardt, Conjugate Gradient and Resilient Back propagation 
algorithms for daily stream flow forecasting on Filyos stream in Turkey and for lateral stress estimation of cohesionless soils [2]. They 
conclude that LM algorithm takes smaller time for training. Although the training time of RB is more than LM, the test results of RB 
are better. RB and CG algorithms are found to be the most robust in both cases. But they comment that it is difficult to generalize the 
best algorithm and the algorithm is to be chosen based on the complexity of the problem, size of data sets and the number of weights 
and biases in the network [2]. 

The Marquardt algorithm was tested on several function approximation problems, and it was compared with the conjugate gradient 
algorithm and with variable learning rate backpropagation by  Martin T. Hagan and Mohammad B. Menhaj [3].   They conclude that 
the Marquardt algorithm is very efficient for training networks which have few hundred weights.  The computational requirements are 
much higher for Marquardt algorithm. It presents a high precision. The authors also found that in many cases the Marquardt algorithm 
converged when the conjugate gradient and variable learning rate algorithms failed to converge [3].  

S. Sapna, Dr. A. Tamilarasi and M. Pravin Kumar have used ANNs for prediction of Diabetes employing the Levenberg-Marquardt, 
Conjugate Gradient and Variable Learning Rate Back propagation algorithms [4]. They conclude that Levernberg-Marquardt algorithm 
gives the best performance in the prediction of diabetes compared to any other backpropogation algorithm [4]. They also conclude that 
Marquardt algorithm converged when the conjugate gradient and variable learning rate algorithms failed to converge [4]. 

The Scaled Conjugate gradient algorithm was used for classification of baby cry problem by José Orozco, Carlos A. Reyes García [5]. 
The authors found that the SCG Method avoids a time consuming line-search and thereby makes the algorithm faster than other second 
order Conjugate Gradient algorithms. Further the classification accuracy of 91.08% was obtained [5] 
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Further the Scaled Conjugate gradient algorithm was used by Haradhan Chel, Aurpan Majumder and Debashis Nandi [6] for training 
the neural network for handwritten text and character recognition. The algorithm offers faster training with excellent test efficiency. 

Scaled Conjugate gradient algorithm and the Bayesian training algorithm were used by Tshilidzi[7] for training the neural networks for 
fault identification in cylinders. It was concluded that the Bayesian training algorithm is found to be more accurate. A. Payal et al. 
performed a comparative analysis Bayesian regularization and Levenberg-Marquardt training algorithm for localization in wireless 
sensor network [8]. They found that the Bayesian regularization algorithm more effective.  

Sheela Tiwari, Ram Naresh and Rameshwar Jha made a comparative study on back propagation algorithms for artificial neural 
networks for identification of power system [9]. They declared that The Gradient Descent algorithm was very slow in converging and 
the average time required for training the network using the Levenberg- Marquardt algorithm was the least. The maximum time was 
required for training the network using the Scaled Conjugate Gradient Descent algorithm. The training algorithm Bayesian 
Regularization continuously modifies its performance function and hence, takes more time. Further the error computed by the LM 
trained neural network is the least [9]. 

Harwinder Kaur α & Dalwinder Singh Salaria used the three training algorithms LM, BPA and  BR for effort estimation in software 
project development [10]. They declared that the Bayesian Regularization gives the best performance even though the training time is 
more.   

III. Conclusion 

Several applications which utilized different training algorithms are presented. It is very hard to say which the best algorithm is. 
Normally from the above discussions it may be conclude that for prediction or regression applications the Levenberg-Marquardt 
algorithm may be a better choice if the dataset is a smaller one. On the other hand the Bayesian Regularization algorithm is best suited 
even for large data sets. It may be a slower one but it offers the most accurate results. The Scaled Conjugate gradient algorithm is best 
suited for the classification applications. 
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