

International Conference on Systems, Science, Control, Communication, Engineering and Technology 2016 [ICSSCCET 2016]

ISBN	978-81-929866-6-1	VOL	02
Website	icssccet.org	eMail	icssccet@asdf.res.in
Received	25 – February – 2016	Accepted	10 - March – 2016
Article ID	ICSSCCET140	eAID	ICSSCCET.2016.140

A Review on Pairwise T_s - Spaces

J Logeshwari¹, S Faridha², S Sharmila Banu³

Assistant Professors, ^{1,2,3}Department of Mathematics, Karpagam Institute of Technology, Coimbatore.

Abstract: The purpose of this paper is to review on pairwise TS-spaces and some of their properties.

Keywords: pairwise $T_{1/2}$ – space, pairwise T_{s} - space, $\tau 1 \tau 2$ - α_g closed set.

1. INTRODUCTION AND PRELIMINARIES

A triple (X, τ_1, τ_2) where X is a non empty set and τ_1 and τ_2 are topologies on X is called a bitopological space and Kelly [17] initiated the study of such spaces. K.Chandrasekhara Rao and K.Kannan [3, 4, 16, 6] introduced the concepts of s^*g -closed sets and s^*g -locally closed sets in bitopological spaces. Using the concept of $\tau_1\tau_2 - s^*g$ -closed sets, K.Chandrasekhara Rao and D.Narasimhan [5] introduced the concept of pairwise T_i -spaces in bitopological spaces. Ideals in topological spaces have been considered since 1930. In 1990, Jankovic and Hamlett [15], once again initiated the application of topological ideals and generalized the most fundamental properties in topological spaces. An ideal I on a topological space (X, τ) is a collection of subsets of X which satisfies the following properties: (i) $A \in I$ and $B \subseteq A$ implies $B \in I$, (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. (X, τ, I) represents the topological space with an ideal I. Let P(X) be the set of all subsets of X, a set operator ()^{*}: $P(X) \rightarrow P(X)$, called the local function [20] of A with respect to τ and I, is defined as follows: for $A \subseteq X$, $A^*(I, \tau) = \{x \in X / U \cap A \notin I$ for every open set U containing x $\}$. We simply write A^* instead of $A^*(I, \tau)$ in case there is no confusion. X^* is often a proper subset of X. For every ideal topological space (X, τ, I) , there exists a topology $\tau^*(I)$, finer than τ , generated by $\beta(I, \tau) = \{U \setminus J: U \in \tau$ and $J \in I\}$. It is known in [15] that $\beta(I, \tau)$ is not always a topology on X. A subset A of an ideal space (X, τ, I) is called τ^* -closed [15] or simply *-closed (resp. *-closed in itself) if $A^* \subseteq A$ (resp. $A \subseteq A^*$). A Kuratowski closure operator $cI^*(I)$ for a topology $\tau^*(I, \tau)$, called the *-topology, is defined by $cI^*(A) = A \cup A^*(\tau, I)$ [31]. M.Khan and M.Hamza [19] introduced the concept of I_{***} -closed sets in ideal topological spaces.

Definition: 1.1 A bitopological space (*X*, τ_1 , τ_2) is called a

- 1. pairwise $T_{1/2}$ -space [11] if every τ_1 -g closed set is τ_2 -closed and every τ_2 -gclosed set is τ_1 -closed,
- 2. pairwise $T_{1/2}^*$ -space [30] if every $\tau_1 \tau_2 q^*$ closed set is τ_2 -closed and every $\tau_2 \tau_1 q^*$ closed set is τ_1 -closed,
- 3. pairwise T_b -space [9] if every $\tau_1 \tau_2$ -gs closed set is τ_2 -closed and every $\tau_2 \tau_1$ -gs closed set is τ_1 -closed,
- 4. Pairwise T_{p}^{*} -space [32] if every $\tau_{1}\tau_{2}$ - $g^{*}p$ closed set is τ_{2} -closed.

Definition: 1.2: A bitopological space (X, τ_1, τ_2) is called a pairwise T_s -space if every $\tau_1 \tau_2 - s^* g$ closed set is τ_2 -closed in X and every $\tau_2 \tau_1 - s^* g$ closed set is τ_1 -closed in X.

Example 1.3: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}, \tau_2 = \{\phi, \{a\}, \{a, c\}, X\}$. Then $\{X, \tau_1, \tau_2\}$ is a pairwise T_s -space.

This paper is prepared exclusively for International Conference on Systems, Science, Control, Communication, Engineering and Technology 2016 [ICSSCCET 2016] which is published by ASDF International, Registered in London, United Kingdom under the directions of the Editor-in-Chief Dr T Ramachandran and Editors Dr. Daniel James, Dr. Kokula Krishna Hari Kunasekaran and Dr. Saikishore Elangovan. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honoured. For all other uses, contact the owner/author(s). Copyright Holder can be reached at copy@asdf.international for distribution.

2016 © Reserved by Association of Scientists, Developers and Faculties [www.ASDF.international]

Proposition 1.4: Let (X, τ_1, τ_2) be a $\tau 1 \tau 2$ - T_s space.

- a) If *Y* is a τ_2 -closed subspace of *X*, then $(Y, \tau_1/Y, \tau_2/Y)$ is a $\tau_1\tau_2$ - T_s space and
- b) If *Y* is a τ_1 -closed subspace of *X*, then $(Y, \tau_1/Y, \tau_2/Y)$ is a $\tau_2\tau_1 T_s$ space.

Proof. Let *X* be a pairwise T_s - space and *Y* be a τ_2 - closed subspace of *X*. Let *A* be $\tau_1\tau_2$ - s^*g closed in *Y*. Let $A \subseteq U$ and *U* is τ_1 -semi open in *Y*.

Then, $\tau_2 - cl_Y(A) \subseteq U$. Since U is τ_1 - semi open in Y, we have $U = G \cap Y$ where G is τ_1 - semi open in X. Therefore $A \subseteq G$ and G is τ_1 - semi open in X. Since A is $\tau_1 \tau_2$ - s^*_g closed in Y, we have $A = H \cap Y$ where H is $\tau_1 \tau_2$ - s^*_g closed in X. But X is a pairwise T_s - space.

- \Rightarrow *H* is τ_2 closed in *X*.
- \Rightarrow $H \cap Y$ is τ_2 closed in X.
- \Rightarrow *A* is τ_2 closed in *X*.
- \Rightarrow $A \cap Y$ is τ_2 closed in Y.
- \Rightarrow *A* is τ_2 -closed in *Y*.
- (b) As we proved in (a)

Theorem 1.5: Let *I* be a index set. Let $\{X_i, i \in I\}$ be pairwise T_s -spaces. Then their product $X = \prod X_i$ is a pairwise TS-space.

Proof. Let $A = p_j(A) \ge \Pi X_i$, $i \neq j$ be $\tau_1 \tau_2 - s^* g$ closed in $X = \Pi X_i$ where $p_j : \Pi X_i \to X_j$ be the jth projection map which is a surjection. Then τ_2 - cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - semi open in X. Since U is τ_1 - semi open in $X = \Pi X_i$, $U = \Pi X_i \ge U_j$, $j \neq i$, where U_j is τ_1 - semi open in X_j . Since p_j : $\Pi X_i \to X_j$, $i \neq j$, be the j^{th} projection map, we have $p_j(U) = U_j$. Also $A \subseteq U$. Hence $p_j(A) \subseteq p_j(U) = U_j$. Since A is $\tau_1 \tau_2 - s^* g$ closed in X, $p_j(A)$ is $\tau_1 \tau_2 - s^* g$ closed in X_j . Since X_j is a pairwise T_s - space, we have $A_j = p_j(A)$ is τ_2 - closed in X. Therefore every $\tau_1 \tau_2 - s^* g$ closed set is τ_2 - closed. Similarly, we can prove every $\tau_2 \tau_1 - s^* g$ closed set is τ_1 - closed. Hence X is a pairwise T_s - space.

Lemma 1.6: The inverse image of a $\tau_1 \tau_2 - s^* g$ closed set under a pairwise continuous bijection map $f: X \to Y$ is $\tau_1 \tau_2 - s^* g$ closed, where *Y* is another bitopological space.

Proof. Let $f:(X, \tau I, \tau 2) \to (Y, \sigma_1, \sigma_2)$ be a pairwise continuous bijection. Let A be $\sigma_1 \sigma_2 - s^* g$ closed in Y. We shall show that $f^{-1}(A)$ is $\tau_1 \tau_2 - s^* g$ closed in X. Let $f^{-1}(A) \subseteq U$, where U is τ_1 -semi open in X. Then $A \subseteq f(U)$ and f(U) is σ_1 -semi open in Y. Since A is $\sigma_1 \sigma_2 - s^* g$ closed in Y, we have $\sigma_2 - cl(A) \subseteq f(U)$. Therefore $\tau_2 - cl[f^{-1}(A)] \subseteq f^{-1}[\sigma_2 - cl(A)] \subseteq f^{-1}[f(U)] = U$ {since f is pairwise continuous and bijection} $. \Rightarrow \tau_2 - cl[f^{-1}(A)] \subseteq U$. Then $f^{-1}(A)$ is $\tau_1 \tau_2 - s^* g$ closed in X.

Theorem 1.7: The image of a pairwise T_s -space under a pairwise continuous bijection map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a pairwise T_s -space, where Y is another bitopological space.

Proof. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a pairwise continuous bijection map. Since f is onto, we have Y = f(X). Let A be $\sigma_1 \sigma_2 - s^* g$ closed in Y. We shall show that A is σ_2 - closed in Y. By Lemma 4.5, we have $f^{-1}(A)$ is $\tau_1 \tau_2 - s^* g$ closed in X. But, X is a pairwise T_s -space. Hence $f^{-1}(A)$ is τ_2 - closed in X.

 \Rightarrow *F*-1(*A*) = τ_2 -cl [$f^{-1}(A)$]. This implies A = $f[\tau_2 - cl [f^{-1}(A)] \supseteq \sigma_2 - cl (A)$.

Hence $\sigma_2 - \operatorname{cl}(A) \subseteq A$. Obviously $A \subseteq \sigma_2 - \operatorname{cl}(A)$.

Therefore, $\sigma_2 - \operatorname{cl}(A) = A$. Now, $\sigma_2 - \operatorname{cl}_Y(A) = \sigma_2 - \operatorname{cl}(A) \cap Y = A \cap Y = A$. Therefore, *A* is σ_2 - closed in *Y*. Similarly we can prove every $\sigma_2\sigma_1 - s_{\mathcal{A}}^*g$ closed set is σ_1 - closed in *Y*. Hence *Y* is pairwise T_s - space.

Theorem 1.8: In a pairwise T_{s} - space,

- a) the intersection of two $\tau_1 \tau_2 s^* g$ closed sets is $\tau_1 \tau_2 s^* g$ closed;
- b) The union of two $\tau 1\tau 2 s^* g$ open sets is $\tau 1\tau 2 s^* g$ open.

Proof. (a) Let A and B be two $\tau_1\tau_2 - s^*g$ closed sets in (X, τ_1, τ_2) . Since X is a pairwise TS-space, A and B are τ_2 -closed in X. Hence $A \cap B$ is τ_2 -closed in X. Consequently $A \cap B$ is $\tau_1\tau_2 - s^*g$ closed in X.

(b) Let *A* and *B* be two $\tau_1\tau_2 - s^*g$ open sets in (X, τ_1, τ_2) . Then A^C and B^C are $\tau_1\tau_2 - s^*g$ closed in *X*. By (a), AC $\cap B^C = (A \cup B)^C$ is $\tau_1\tau_2 - s^*g$ closed in *X*. Therefore $A \cup B$ is $\tau_1\tau_2 - s^*g$ open in *X*.

Theorem 1.9: (a) Every pairwise $T_{1/2}$ - space is a pairwise T_s - space;

(b) Every pairwise T_b - space is a pairwise T_s - space;

(c) Every pairwise $_{\alpha}T_{b}$ - space is a pairwise T_{s} - space;

(d) Every pairwise door space is a pairwise T_s - space.

Proof. (a) Suppose that X is a pairwise $T_{1/2}$ - space. Since every $\tau_1 \tau_2 - s^* g$ closed set is τ_2 - closed in a pairwise $T_{1/2}$ - space, X is a pairwise T_s - space.

(b) Suppose that X is a pairwise Tb - space. Let A be $\tau_1 \tau_2 - s^* g$ closed in X. Then A is $\tau_1 \tau_2 - gs$ closed in X. Since X is a pairwise T_b - space, A is τ_2 - closed in X. Hence X is pairwise T_s - space.

(c) Suppose that X is a pairwise α Tb - space. Let A be $\tau 1\tau 2 - s^*_g$ closed in X. Then A is $\tau_1 \tau_2 - \alpha_g$ closed in X. Since X is a pairwise ${}_{\alpha}T_b$ - space, A is τ_2 - closed in X. Therefore X is a pairwise T_s - space.

(d) Let X be a pairwise door space. Then X is a pairwise $T_{1/2}$. From (a), we have X is a pairwise T_{S} -space.

Remark 1.10: The converse of the above theorem are not true as can be seen from the following example.

Example 1.11: In Example 4.2, (X, τ_1, τ_2) is a pairwise T_{s} - space but not a pairwise $T_{1/2}$ - space, pairwise T_b - space, pairwise αT_b - space or a pairwise door space.

Theorem 1.12:

- a) Every $\tau_1 \tau_2 gs$ closed set in a pairwise T_b space is $\tau_1 \tau_2 s^* g$ closed;
- b) Every $\tau_1 \tau_2 sg$ closed set in a pairwise T_b space is $\tau_1 \tau_2 s^*g$ closed;
- c) Every $\tau_1 \tau_2 \alpha_g$ closed set in a pairwise αT_b space is $\tau_1 \tau_2 s^*_g$ closed.

Proof. (a) Let X be a pairwise T_b - space and A be $\tau_1\tau_2$ - gs closed in X. Then A is τ^2 - closed in X. Consequently, A is $\tau_1\tau_2$ - s^*g closed in X.

(b) Let X be a pairwise T_b - space and A be $\tau 1 \tau 2$ - sg closed in X. Since A is $\tau_1 \tau_2$ - gs closed in X, A is $\tau_1 \tau_2$ - s^{*}g closed in X {by (a)}.

(c) Let *X* be a pairwise α Tb - space and *A* be $\tau 1 \tau 2 - \alpha g$ closed in *X*. Then A is τ_2 - closed in *X*. Consequently, *A* is $\tau_1 \tau_2 - s^* g$ closed in *X*.

Corollary 1.13:

- a) Every subset of a pairwise complemented T_b space is $\tau_1 \tau_2 s^* g$ closed;
- b) Every subset of a pairwise complemented $T_{1/2}$ space is $\tau_1 \tau_2$ $s^* g$ closed;
- c) Every subset of a pairwise complemented $_{\alpha}T_{b}$ space is $\tau_{1}\tau_{2}$ $s^{*}g$ closed.

Proof. (a) Since *X* is a pairwise complemented, every subset of *X* is $\tau_1\tau_2 - gs$ closed in *X*. Since *X* is a pairwise T_b - space, every subset of *X* is $\tau_1\tau_2 - s_{\mathcal{A}}^*g$ closed in *X* (by Theorem 4.11(a)).

(b) Since X is a pairwise complemented, every subset of X is $\tau_1 \tau_2 - g$ closed in X. Since X is a pairwise $T_{1/2}$ - space, every subset of X is $\tau_1 \tau_2 - s^*_g$ closed in X.

(c) Since X is a pairwise complemented, every subset of X is $\tau_1 \tau_2 - \alpha_g$ closed. Since X is a αT_b -space, every subset of X is $\tau_1 \tau_2 - s_g^*$ closed in X by Theorem 4.11(c)}.

Theorem 1.14: If (X, τ_1, τ_2) is both pairwise T_p^* - space and pairwise *T_p - space then X is a pairwise T_s - space.

Proof. Let A be $\tau_1\tau_2 - s^*g$ closed in X. Then A is $\tau_1\tau_2 - gp$ closed in X. Since X is a pairwise *T_p -space, A is $\tau_1\tau_2 - g^*p$ closed in X. Therefore X is a pairwise T_s^* - space. Hence A is τ_2 - closed in X. Consequently, X is a pairwise T_s - space.

References

1. Arya.S.P and Nour.T, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21 (8) (1990), 717-719.

- 2. Chandrasekhara Rao.K and Joseph.K, Semi star generalized closed sets, Bulletin of Pure and Applied Sciences 19E(No 2) 2000, 281-290.
- 3. Chandrasekhara Rao.K and K.Kannan, Semi star generalized closed sets and semi star generalized open sets in bitopological spaces, Varahimir Journal of Mathematics 5(2) (2005), 473-485.
- Chandrasekhara Rao.K, Kannan.K. and Narasimhan.D., Characterizations of l₁l₂-s*g- closed sets, Acta Ciencia Indica, XXXIII M, (3) (2007), 807-810.
- 5. Chandrasekhara Rao.K and Narasimhan.D, Pairwise Ts-Spaces, Thai Journal of Mathematics 6(1) (2008), 1-8.
- Chandrasekhara Rao.K and Kannan.K, s*g-Locally Closed Sets in Bitopological spaces Int.J.Contemp.Math.Sciences, 4(12) (2009), 597-607.
- 7. Crossley.S.G and Hilderbrand.S.K, semi-closure, Texas J. Sci., 22(1971), 99-112.
- 8. Dontchev.J, Ganster.M and Noiri.T, Unified approach of generalized closed sets via topological ideals, Math.Japan, 49(1999), 395-401.
- El-Tantawy.O.A. and Abu-Donia.H.M, Generalized Separation axioms in Bitopological spaces, The Arabian Journal for Science and Engg. 30 (1A) 2005, 117-129.
- 10. Fathi H.Khedr and Hanan S.Al-saadi, On pairwise semi generalized closed sets JKAU: sci, 21(2) 2009, 269-295.
- 11. Fukutake.T, On generalized closed sets in bitopological spaces, Bull.Fukuoka.Univ.Ed. Part III, 35(1986), 19-28.
- 12. Fukutake.T, Semi open sets on bitopological spaces, Bull.Fukuoka Uni. Education, 38(3) (1989), 1-7.
- 13. Hayashi.E, Topologies defined by local Properties, Math.Ann., 156 (1964), 205-215.
- 14. Jankovic.D and Reilly.I.L, On Semi-Separation Properties, Indian J. Pure. Appl.Math., 16(9)(1985),957-964.
- 15. Jankovic.D and Hamlett.T.R, New topologies from old via Ideals, Amer.Math.Monthly, 97(4) (1990), 295-310.
- 16. Kannan.K, Narasimhan.D and Chandrasekhara Rao.K., On semi star generalized closed sets in bitopological spaces, Bol.Soc.Paran.Mat.28 (2010), 29-40.
- 17. Kelly. J.C, Bitopological spaces, Proc. London Math. Society, 13(1963), 71-89.
- Khan.M and Hamza.M, I_{i*g}-closed sets in Ideal Topological Spaces, Global Journal of Pure and Applied Mathematics, 7(1) (2011), 89-99.
- 19. Kuratowski.K, Topology I, Warszawa, 1933.
- 20. Levine.N, Semi-open sets and semi-continuity in topological Spaces, Amer. Math. Monthly, 70(1) (1963), 36-41.
- 21. Levine.N, Generalized closed sets in topology, Rend. Cric.Mat. Palermo, 19(2) (1970), 89-96.
- 22. Maheshwari.S.N and Prasad.R, Some new separation axioms, Ann.Soc.Sci.Bruxelles, 89(1975), 395-402.
- Maheshwari.S.N and Prasad.R, Semi-open sets and Semi-continuous function in bitopological spaces, Math Notae, 26(1977-78), 29-37.
- Maki.H., Devi.R. and Balachandran.K, Generalized α-closed sets in topology, Bull. Fukuoka Univ.Ed.Part III, 42(1993), 13-21.
- 25. Njastad.O, on some classes of nearly open sets, Pacific J.Math., 15 (1965), 961-970.
- Renuka Devi.V, Sivaraj.D and Tamizh Chelvam.T, Codense and completely codense ideals, Acta Math.Hungarica., 108(3) (2005), 197-205.
- 27. Sampath Kumar.S, On decomposition of pairwise continuity, Bull.Cal.Math.Soc.26 (1997), 441-446.
- Shantha Bose, Semi open sets, semi continuity and semi open mappings in bitopological spaces, Bull.cal.Math.Soc., 73(1981), 237-246.
- 29. SheikJohn.M and Sundram.P, g*-closed sets in Bitopological spaces Indian J.Pure. Appl. Math., 35(1), 2004, 71-80.
- 30. Vaidyanathaswamy.R, Set Topology, Chelsea Publishing Company, 1946.
- 31. Vadivel.A and Swaminathan.A g*p-closed sets in Bitopological spaces, Journal of Advanced studies in Topology 3(1) 2012, 81-88.