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1. INTRODUCTION AND PRELIMINARIES 

Generalized open sets play a very important role in general topology and they are now the research topics of many topologists 
worldwide. Indeed a significant theme in general topology and real analysis concerns the various modified forms of continuity, 
separation axioms etc., by utilizing generalized open sets. In 1963, Levine [3] also introduced the concept of semi open sets in 
topological space. Since then numerous applications have been found in studying different types of continuity like maps and separation 
of axioms. The concept of  δ -interior,  δ -closure, θ -interior and θ  -closure  operators were first introduced by Velico [8]  in 1968, 
for the purpose of studying the important class of  H-closed spaces. These operators have since been studied intensively by many 
authors. In 1965, Njastad [5] introduced the concept of α-open sets. Latter in 1982, Mashhour.et.al., [4] introduced the concept of  
pre open sets. Latter in 1996, Andrijevic [1] introduced a class of generalized open sets in a topological space, so called b-open sets. 
The class of b-open sets is contained in the class of semi preopen sets and contains all semi-open sets and pre-open sets.  

 In 1996, by using δ-closure operator Dontchev et.al., [2]  introduced and studied the concept of δ-g closed sets which is a slightly 
stronger form of g-closedness, properly placed between δ-closedness and g-closedness and introduced the notion of  T{3/4} spaces as 
the spaces where every  δ-closed set  is δ-closed.  The notions of b-δ - open Set was introduced and studied by Padmanaban [6] in 
2013. In this paper we investigate some more results and fundamental properties of b-δ-closed sets.   

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are 
assumed unless explicitly stated.  Let A be a subset of a space (X, τ). We denote closure and interior of A by cl (A) and int(A), 
respectively.  

A subset A of a topological space (X, τ) is said to be 

I. α -open [5] if A ⊆ int(cl(int(A))), 
II. Semi-open [3] if A ⊆ cl(int(A)), 
III. Pre-open [4] or nearly open [33] if A ⊆ int(cl(A)), 
IV. b -open [1] if A ⊆ cl(int(A)) ∪ int(cl(A)). 
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The complement of above mentioned open sets are their respective closed sets. Let A be a subset of a topological space (X, τ). A point 
x ∊ X is called a δ -cluster [8] point of A, if int(cl(U)) ∩ A = φ for every open set U of X containing x. The set of all δ - cluster points 
of A is called the δ -closure of A and is denoted by δ- cl(A). Alternatevely the δ -closure of A is the set of all x in X such that the 
interior of every closed neighborhood of x intersects A non trivially. If A = δ - cl(A), then A is called δ-closed.The complement of a δ 
-closed set is called δ -open set. The δ -interior of a subset A of X is defined as the union of all regular open sets of (X, τ) contained in 
A and is denoted by δ - int(A). The family of all δ -open subsets of X is denoted by δO(X) and the family of all δ -closed subsets of X is 
denoted by δC(X). 

Let A be a subset of a topological space (X, τ). A point x ∊ X is called a θ -cluster [8] point of A, if cl(U) ∩A = φ for every open set U 
of X containing  x. The set of all θ -cluster points of A is called the θ -closure of A and is denoted by θ - cl(A)). If A = θ - cl(A), then A 
is called θ -closed. The complement of a θ -closed set is called θ -open set [95]. θ -interior of a subset A of X is defined as the union of 
all θ -open sets contained in A and is denoted by θ - int(A). The family of all θ -open subsets of X is denoted by θO(X) and the family 
of all θ -closed subsets of X is denoted by θC(X). 

Let A be a subset of a topological space (X, τ). A point x ∊ X is called a b - θ- cluster [7] point of A, if b - cl(U) ∩ A =φ for every b -
open set U of X containing x. The set of all b - θ -cluster points of A is called the b -θ -closure of A and is denoted by b - θ - cl(A). If A 
= b -θ - cl(A) then A is called b - θ -closed. The complement of a b -θ -closed set is called b - θ -open set. The family of all b - θ -open 
subsets of X is denoted by BθO(X) and the family of all b - θ -closed subsets of X is denoted by BθC(X). 

On b-δ-Closed Sets 

Definition 3.1.  Let A be a subset of a topological space (X, τ).  A point x of X is called a b-δ-cluster [6] point of A if int (b-cl(U)) ∩ 
A ≠   φ for every b-open set U of X containing x.  The set of all b-δ-cluster point of A is called b-δ-closure of A and is denoted by b-δ-
cl(A). A subset A of a topological space (X, τ) is said to be b-δ-closed, iff A = b-δ-cl(A). The complement of a  b-δ-closed set is said to 
be b-δ-open set.  

The b-δ-interior of a subset A of (X, τ)   is defined as the union of all b-δ-open sets of (X, τ) contained in A and is denoted by b-δ-
int(A). Alternatively, a point x in X is called b-δ-interior point of A, if there exists a b-open sets containing x such that int(b-cl(U)) ⊆ 
A. The set of all b-δ-interior points of A is called b-δ-interior of A. The family of all b-δ-open sets of the space (X, τ)   is denoted by 
Bδ O(X) and the family of all b-δ-closed sets of the space (X, τ)   is denoted by Bδ C(X). 

Theorem 3.2. For a topological space (X, τ)   the following hold:  

1. Every b-δ-open is b-θ-open set, 
2. Every b-θ-open is b-open set. 

Proof.  Follows from the definitions b-δ-open, b-θ-open and b-open sets. 

The converse of above theorem need not to be true as shown in the following examples. 

Example 3.3.  Let X={a,b,c,d} and τ ={φ, {a}, {b}, {a,b},{b,c}, {a,b,c}, X}. Then we have BO(X,τ)={φ, 
{a},{b},{a,b},{a,d},{b,c},{b,d},{a,b,c},{a,b,d},{b,c,d},X}, B θ O(X)={φ, {a}, {a,d},{b,c}, {a,b,c}, {b,c,d}, X} and  B δ 
O(X)={φ, {a,d},{b,c,d}, X}.Here A={a,b,c} is b-θ-open but not b-δ-open set.  

Example 3.4.   Let X={a,b,c,d} and τ ={φ,{a},{b},{a,b},{a,d},{a,b,d}, X}. Then we have BO(X,τ)={φ, 
{a},{b},{a,b},{a,c},{a,d},{b,c},{a,b,c},{a,b,d},{a,c,d},X } and B θ O(X)={φ, {b}, {a,d},{b,c}, {a,b,d}, {a,c,d}, X}.Here 
A={a,b,c} is b-open but not b-θ-open set. 

Theorem 3.5.  For a topological space (X, τ) , Every b-δ-open is b-open set. 

Proof.  Follows from Theorem 3.2. 

The converse of above theorem need not to be true as shown in the following examples. 
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 Example 3.6. Let X={a,b,c,d} and τ ={φ,{a},{b},{a,b}, X} . Then we have BO(X,τ)={φ, {a},{b},{a,b},{a,c},{a,d},{b,c}, 
{b,d},{a,b,c},{a,b,d},{b,c,d},{a,c,d},X } and Bδ O(X)  ={φ, {a,c,d},{b,c,d},  X}.Here A={a,b,d} is b-open but not b-δ-open 
set. 

Remark 3.7. In a topological space (X, τ), δ-open and b-δ-open are independent as shown in the following example. 

Example 3.8. Let X={a, b, c}and τ ={φ, {a}, {b}, {a,b}, X}.Then we have BO(X)= {φ, {a}, {b}, {a, b}, {b,c},{a,c}, X}, 
δO(X)={φ, {a}, {b}, {a, b}, X}and  Bδ O(X)={ φ , {b,c}, {a,c}, X}.Here A={a,b} is δ-open but not b-δ-open set and B={a,c} is 
b-δ-open but not δ-open set. 

Remark 3.9.  In a topological space (X, τ) pre-open and b-δ-open are independent as shown in the following example. 

Example 3.10. Let X= {a,b,c,d} and τ ={φ, {a}, {b}, {a,b}, X}. Then we have BO(X,τ)={φ, {a}, {b}, {a,b}, {a,c}, {a,d}, 
{b,c},{b,d}, {a,b,c}, {a,b,d}, {b,c,d}, {a,c,d}, X},PO(X)= {φ, {a}, {b}, {a,b}, {a,b,c}, {a,b,d}, X}and Bδ O(X)={φ, {a,c,d}, 
{b,c,d}, X}. Here A={a,b,c} is pre-open but not b-δ-open set and B={a,c,d} is b-δ-open but not pre-open set. 

Remark 3.11.  In a topological space (X, τ), α-open and b-δ-open are independent as shown in the following example. 

Example 3.12.  Let X= {a,b,c} and  τ ={φ, {a}, {b}, {a,b}, X}. Then A= {a,b} is α-open but not b-δ-open  and B={b,c }is b-δ-
open but not α-open set. 

Remark 3.13. In a topological space (X, τ)   semi-open and b-δ-open are independent, since every α-open is semi-open set. 

Example 3.14 Let X= {a,b,c} and τ ={φ, {a}, {b}, {a,b}, {b,c}, X}. Then A={a,b} is semi-open  but not b-δ-open set. 

Example 3.15  Let X={a,b,c,d} and τ={φ, {a}, {b}, {a,b}, {a,d}, {a,b,d}, X}.Then B={a,c,d} is b-δ-open  but not semi-open 
set. 

Remark 3.16.  In a topological space (X, τ), open and b-δ-open are independent as shown in the following example. 

Example 3.17.  Let X={a, b, c} and τ ={φ, {a}, {b}, {a,b}, X}.Then we have BO(X)= {φ, {a}, {b}, {a, b}, {b,c},{a,c}, 
X},δO(X)={φ, {a}, {b}, {a, b}, X}and Bδ O(X)={φ, {b,c}, {a,c}, X}.Here A={a,b} is open but not b-δ-open set and B={a,c} is 
b-δ-open but not open set. 

Remark 3.18. The union of two b-δ-closed sets is not necessarily b-δ-closed. 

Example 3.19.  Let X = {a, b, c, d} and  τ = {φ, {a}, {b}, {a, b}, X}.Then we have BO(X,τ)={φ, {a}, {b}, {a,b}, {a,c}, {a,d}, 
{b,c},{b,d}, {a,b,c}, {a,b,d}, {b,c,d}, {a,c,d}, X }and BδC(X)={φ, {a}, {b},  X }. A = {a} and B ={b} are b-δ-closed sets, but  

A ∪  B is not a b-δ-closed set. 

Lemma 3.20. Let A be a subset of a topological space (X, τ)  Then b-δ-cl(A) ⊆ bθ-cl(A). 

Proof.  Since int(b-cl(U)) ⊆ b-cl(U), the proof follows from definitions of   b-δ-closure and b-θ-closure.  

Theorem 3.21.  Let A and B be any subsets of a topological space (X, τ).   If A ⊆ B, then  

1. 1.b-δ-cl(A) ⊆  b-δ-cl(B), 
2. b-δ-cl(b-δ-cl(A) ) ⊆  b-δ-cl(A). 

Proof.  1. Given A ⊆ B. If U ∊ BO(X,x),  then b-cl(U) ∩ A ⊆ b-cl(U) ∩ B. Hence we have, int(b-cl(U)) ∩ A ⊆ int(b-cl(U)) ∩ B. 
Thus b-δ-cl(A) ⊆  b-δ-cl(B) 

2. Obvious.  

Remark 3.22. Let A and Aα (α ∊ Λ) be any subset of a topological space (X,τ ) Then the following properties hold: 
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1. b-δ-cl(A) is b-δ-closed, 
2. If  Aα  is b-δ-open in X for each α ∊ Λ ,then U α ∊ Λ  Aα  is b-δ-open in (X,τ ). 

Lemma 3.23. Let (X, τ)   be a topological space and let A ⊆ X. Then 

1. b-δ-cl(X-A) = X-(b-δ-int(A)), 
2. b-δ-int(X-A) = X-(b-δ-cl(A)). 

Proof. Obvious. 

From the above discussion we have the following diagram.   

 

Theorem 3.24. A subset U of a topological space (X,τ) is b-δ-open in (X, τ)   if and only if for each x in U, there exists a W ∊ BO(X) 
with x ∊ W such that int(b-cl(W)) ⊆ U. 

Proof. Suppose that U is b-δ-open in (X,τ). Then X-U is b-δ-closed. Let x ∊ U. Then x ∉ b-δ-cl(X-U) and so there exists W ∊ 
BO(X,x) such that int(b-cl(W)) ∩ (X-U )= φ which implies int(b-cl(W)) ⊆ X-(X-U)=U. Thus int(b-cl(W)) ⊆ U. Conversely, assume 
that U is not a b-δ-open. Then X - U is not b-δ-closed, and so there exists x ∊ b-δ-cl(X-U) such that x ∉ (X - U). Since x ∊ U, by 
hypothesis, there exists W ∊ BO(X,x) such that int(b-cl(W)) ⊆ U. Thus int(b-cl(W)) ∩ (X - U) = φ. This is a contradiction since x ∊ 
b-δ-cl(X - U). 
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