
 International Conference on Cloud of Things and Wearable Technologies 12

Cite this article as: Trusit Shah, S Venkatesan, Harsha Reddy, Somasundaram Ardhanareeswaran and Vishwas

Lokesh. “User Customizable IoT Systems Using Self-Aware Sensors and Self-Aware Actuators”. International

Conference on Cloud of Things and Wearable Technologies 2018: 12-20. Print.

International Conference on Cloud of Things and Wearable Technologies 2018 [ICCOTWT 2018]

ISBN 978-93-88122-00-9 VOL 01

Website iccotwt.com eMail iccotwt@asdf.res.in

Received 26 – May– 2018 Accepted 26 - June – 2018

Article ID ICCOTWT012 eAID ICCOTWT.2018.012

User Customizable IoT Systems Using Self-Aware Sensors
and Self-Aware Actuators

Trusit Shah1, S Venkatesan2, Harsha Reddy3,
Somasundaram Ardhanareeswaran4 and Vishwas Lokesh5

1,2,3,4,5Department of Computer Science, The University of Texas at Dallas, Richardson, Texas, USA

Abstract— Many IoT devices have been designed, built and deployed enabling users to monitor and control their systems through the Internet. Many
of these IoT devices are rigid with no easy ways for users to customize. We have designed an IoT architecture to enable IoT devices to enable user
customization. Customization is performed in two ways: hardware customization and software customization. In hardware customization, a user can
add/remove IoT sensors/actuators, which are made self-aware by our technique, to/from the IoT system without knowing any hardware details of those
sensors/actuators. For software customization, the user can create tasks without writing any code. A self-aware sensor/actuator is a sensor/actuator
with an additional processing element and related components. For software customization, we have designed a rule engine, which converts user-desired
actions into computer code. We have tested this architecture in several real-life scenarios.

INTRODUCTION

Advancements in embedded technology has led to several IoT solutions being offered to various vertical markets. These offerings have
resulted in many advantages for the users. Going ahead, many more devices will become “Web enabled” and join the IoT ecosystem
[1]. Current IoT solutions, offered by many different providers, typically have a proprietary system including User interfaces (both
smart phone and web). The lack of standardization for the IoT products makes them rigid and limits the user’s ability to customize the
product. The heterogeneous environment for different applications and interoperability between different types of network protocols
are some of the major challenges in standardizing IoT products [3].

Many researchers have proposed different ways to standardize IoT products. Some attempts in this effort include protocol
standardization. IETF has proposed protocols such as 6LoWPAN and Co AP for the constrained devices used in the IoT environment
[2]. Some cloud based IoT architectures have also been recommended by the researchers to standardize the IoT architecture using
cloud-based services [4] [5]. In these solutions, the cloud service handles all the types of sensors and actuators in a standardize way.
Most of these IoT architectures are more focused towards standardization of IoT systems (and not customization of the IoT system at
the user level). As these architectures follow some standards, they provide flexibility to the developers to rapidly create new IoT
systems.

In the current IoT systems, if the user wants to customize the software part of the IoT system, the user must reprogram that IoT
system. For example, if a user currently using a proprietary system to monitor temperature at a warehouse needs to monitor humidity
also, he/she would have to either buy a humidity sensor from the same provider and ask them to reprogram the IoT system supporting
new sensor or buy an entirely new system.

This paper is prepared exclusively for International Conference on Cloud of Things and Wearable Technologies 2018 [ICCOTWT 2018] which is published by

ASDF International, Registered in London, United Kingdom under the directions of the Editor-in-Chief Dr Subramaniam Ganesan and Editors Dr. Daniel James,

Dr. Kokula Krishna Hari Kunasekaran and Dr. Saikishore Elangovan. Permission to make digital or hard copies of part or all of this work for personal or classroom

use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honoured. For all other uses, contact the owner/author(s). Copyright Holder can be

reached at copy@asdf.international for distribution.

2018 © Reserved by Association of Scientists, Developers and Faculties [www.ASDF.international]

 International Conference on Cloud of Things and Wearable Technologies 13

Cite this article as: Trusit Shah, S Venkatesan, Harsha Reddy, Somasundaram Ardhanareeswaran and Vishwas

Lokesh. “User Customizable IoT Systems Using Self-Aware Sensors and Self-Aware Actuators”. International

Conference on Cloud of Things and Wearable Technologies 2018: 12-20. Print.

In this paper, we describe a way to build an IoT system that is user customizable. Our architecture consists of four components: Self-
aware sensors/actuators, an IoT gateway device (or IoT device), a server and a user interface. The self-aware sensor/actuator is
connected to the IoT device using a known user interface such as USB, Wi-Fi or Bluetooth. The server communicates with IoT device
and the user interface either via REST calls or over MQTT service. Any sensor/actuator can be converted into self-aware
sensor/actuator using our methodology.

Our architecture focuses on user level customizations: if the user wants to deploy a new IoT system or make a change to an existing
system, the user can do it without having any knowledge of and expertise in hardware or programming.

Our architecture enables the user to build an IoT system using few clicks from the user interface provided by us. For example, the user
can setup a task such as “If the temperature is greater than 50 °F and humidity is 75%, turn on the Fan controller” and make changes to
the IoT system easily whenever requirements change.

The paper is arranged in the following way. First, we discuss the related work in section 2. Section 3 covers the overall system
architecture followed by hardware customization of our architecture in Section 4. In section 5, we describe the software
customization. Section 6 describes the implementation details of the architecture. Section 7 presents a performance analysis of our
architecture.

PREVIOUS WORK

There have been several ways that researchers have conceptualized the idea of user customizable IoT architecture. Kortuem, G. et al.
discuss the awareness of smart IoT objects [17]. In that paper, the authors describe how a normal sensor or actuator can be aware of its
surrounding and can perform tasks according to the environmental change. They have presented ways using which a developer can
pre-program the IoT sensors/actuators with environmental constraints. The user doesn't have any control over customization of an
IoT device.

Several approaches have been presented on the unification of IoT devices. JADE architecture is an example of one such architecture
where the developer can configure and customize the IoT service [18]. JADE provides an easy way to create an IoT device using their
framework. The developer needs to write some code to define the IoT system and JADE creates the IoT system from the defined
script. A restful service is created by Stirbu et. al. [19] for unified discovery, monitoring and controlling of smart things. Sarar et. al
[21] have introduced an IoT architecture with virtual object layer. This virtual object layer is responsible for unifying heterogeneous
IoT hardware. Alam et. al [22] have proposed an architecture named SenaaS, which creates a virtual layer of IoT on the cloud. Here,
IoT sensors are considered as sensor as a service and it hides all the hardware specific details of sensor to the user. Kiran et. al [23] have
designed a rule based IoT system for remote healthcare application. They have created a virtual software layer to execute rules on the
sensor values. As their work focuses only on a single application (healthcare), they don’t have any virtualization on hardware. There
has been similar work done on rule-based IoT systems. An If-Then based rule implementation architecture is explained by Zeng, D. et.
alb [20]. The authors discuss the user configurable triggers for IoT systems.

Popular cloud services such as Amazon AWS, IBM Watson, ATT M2x have created a sensor as service cloud platform for IoT systems
[15, 16]. These architectures are customizable at developer level. A user has the ability to configure few thresholds but the user cannot
customize full IoT System.

SYSTEM ARCHITECTURE

Researchers have proposed different ways to develop an IoT architecture. These architectures can be classified into two types. In the
first type, the IoT sensors/actuators directly communicates with the server over the internet [12]. In the second type, all the
sensors/actuators are connected to a gateway device and that gateway device communicates with the server using a WAN interface
[6,7,8,9]. The first type is suitable for the application where the number of sensors and actuators are low and/or when the network
connectivity is poor.

We have designed two different architectures to demonstrate user customizable IoT system: IoT gateway-based architecture and
standalone self-aware architecture. The IoT gateway-based architecture has four main components: One or more self-aware
sensor(s)/actuator(s), an IoT device, a server (on the cloud) and a user interface. Fig. 1 shows the different components and their
interactions.

Each self-aware sensor/actuator consists of a sensor/actuator with an additional processing element and related support components.
The processing element stores basic details about the sensor/actuator, such as the id of sensor/actuator, type of sensor/actuator,
parameters of sensor/actuator, etc. When the self-aware device is connected to the IoT device, all the details of sensor/actuator is
communicated to the IoT device. The IoT device uploads these details to the server and obtains further instructions from the server on

 International Conference on Cloud of Things and Wearable Technologies 14

Cite this article as: Trusit Shah, S Venkatesan, Harsha Reddy, Somasundaram Ardhanareeswaran and Vishwas

Lokesh. “User Customizable IoT Systems Using Self-Aware Sensors and Self-Aware Actuators”. International

Conference on Cloud of Things and Wearable Technologies 2018: 12-20. Print.

how to handle the newly connected sensor/actuator. Any number of self-aware sensors/actuators can be connected to the IoT device.
The user can monitor all the connected sensors/actuators through the user interface and create tasks for those connected
sensors/actuators.

The standalone self-aware architecture doesn’t have the IoT gateway. The self-aware device (which can be either a self-aware sensor or
a self-aware actuator) directly communicates with the server. The self-aware device must contain a network interface such as Wi-
Fi/Cellular/Satellite modem to communicate with the server. In this case, the software (that processes the task/rule) runs on the
server. Fig. 2 shows the representation of this architecture.

HARDWARE CUSTOMIZATION

We present the details of hardware customization assuming the gateway-based architecture is used. The goal of hardware
customization is to enable the user to add or remove sensors/actuators as the needs change (instead of replacing the whole IoT
system). To achieve such a goal, every time a new self-aware sensor/actuator is connected to the IoT gateway, the self-aware
sensor/actuator should be able to identify itself to the gateway. The sensor/actuator knows the basic details about itself and, once
connected to the IoT gateway, it communicates those details to the IoT gateway device. The following section gives the details of self-
aware sensor/actuator. We use the term developer to denote a person who is an expert in hardware/software and can create a self-
aware device (sensor or actuator). The term user refers to the end user of the IoT system with no expertise in hardware/software.

A. Self-Aware Sensor/Actuator

A self-aware sensor/actuator is basically a sensor/actuator with additional components to make that sensor/actuator self-aware. A
self-aware sensor/actuator typically has the following components.

• Sensor/Actuator

• Processing Element

• Driver circuit for an actuator

• External memory (if processing element doesn’t have sufficient memory)

• Communication interface to communicate with IoT gateway device

• Power supply (if sensor/actuator can’t be powered by IoT gateway device)

B. Converting a Sensor/Actuator into a Self-Aware Sensor/Actuator

Steps to convert an arbitrary sensor/actuator into self-aware sensor/actuator:

1. Select suitable processing element.
2. Interface sensor/actuator to processing element.

 International Conference on Cloud of Things and Wearable Technologies 15

Cite this article as: Trusit Shah, S Venkatesan, Harsha Reddy, Somasundaram Ardhanareeswaran and Vishwas

Lokesh. “User Customizable IoT Systems Using Self-Aware Sensors and Self-Aware Actuators”. International

Conference on Cloud of Things and Wearable Technologies 2018: 12-20. Print.

3. Store parameters of sensor/actuator in the memory.
4. Create a communication interface for communication between a self-aware device and the IoT gateway device connected to

it.
5. Create and embed self-aware device discovery code on IoT gateway device and self-aware device to detect connected nearby

(if wirelessly connected) self-aware devices.

Select Suitable Processing Element

Depending on the type of sensor/actuator, the developer selects the processing element. For example, if the type of sensor is analog,
it is advisable to select a processing element which has an inbuilt analog to digital converter. Some sensors such as crack detection
sensor or fingerprint sensor require a complex algorithm to read sensor value, and hence a processing element with significant
memory and processing power is preferable. The power consumption of processing element is also important, as some installations
may require a battery powered solution. For those applications, processing elements with power saving capabilities should be selected.

Interface Sensor/Actuator to Processing Element and Program Parameters of Sensor/Actuator
into Memory

The developer interfaces the sensor/actuator to the processing element depending on the type of the sensor/actuator. After that the
developer programs the parameters of sensor/actuator into the memory. The parameter can be of two types: fixed parameters and
user configurable parameters. Fixed parameters don’t change over time (such as the unique id of a sensor/actuator, type of a
sensor/actuator or manufacturing date of sensor/actuator). User configurable parameters are the parameters which the user can define
according to the application (for example, the time interval between two consecutive sensor readings). The user can define these user
configurable parameters from the user interface.

Communication Interface between Self-Aware Device and IoT Gateway Device

The communication interface between the self-aware device and the IoT device should be user-friendly and known to the user. WiFi,
USB, and Bluetooth are some examples. The processing element is connected to one such communication interface to communicate
with self-aware sensor/actuator. The IoT device and self-aware sensor/actuator communicate using two methods: query-response
method and interrupt method. In the query- response method, the IoT device queries the self-aware sensor/actuator and self-aware
sensor/actuator responds it. In the interrupt method, the IoT device turns on the interrupt mode where the self-aware device sends
messages to the IoT device without any query. We have developed a library for the query response model in embedded-c which is
suitable for most embedded hardware used for self-aware device.

Self-Aware Device Discoverable Code for IoT Gateway Device

An IoT gateway device should be able to discover all the self-aware devices near it (for wireless connection) and all the devices
connected to it (for wired connection). For different types of communication protocols, the method of discovering self-aware
sensor/actuator changes. For example, for USB, the developer just needs to check the/dev/tty USB ports for checking connected USB
device. For Wi-Fi, a multicast signal with a certain message can be sent and all the nearby self-aware devices respond back. The
developer should write code to enable discovery for all the communication interfaces available on that IoT device. The developer also
writes the code for self-aware device, so that it responds back to the IoT device’s device discovery query.

C. Self-Aware Virtual Sensor

Virtual sensors are sensors that are not physically connected to the IoT system. For example, weather feed from the weather API and
time from the NTP server are some of the virtual sensors we have incorporated into our implementation. We have created a virtual
sensor API in our architecture, which takes virtual sensors as input and attaches a unique id, sensor type and other parameters to make
it self-aware.

D. Validation of Sensor/Actuator Value

Validation of sensor values is an important feature of the self-aware architecture. As the sensors/actuators are self- aware, they know
their typical range of readings of the sensor outputs. These will also be stored as part of the sensor-specific data. If any sensed value is
out of this range, the self-aware sensor notifies the user about the deviation. For example, a ds1820 temperature sensor is connected to

the self-aware device and the maximum value ds1820 temperature sensor can have is 125 ℃ [10]. If the sensor reads more than 125

℃, the self-aware sensor itself needs to generate an error message (in addition to possibly sending the error reading to the server).
Another example of self-validation is related to a self-aware actuator. Suppose we have a relay that controls a compressor as the

 International Conference on Cloud of Things and Wearable Technologies 16

Cite this article as: Trusit Shah, S Venkatesan, Harsha Reddy, Somasundaram Ardhanareeswaran and Vishwas

Lokesh. “User Customizable IoT Systems Using Self-Aware Sensors and Self-Aware Actuators”. International

Conference on Cloud of Things and Wearable Technologies 2018: 12-20. Print.

actuator, which has been made self-aware. For compressor longevity, the compressor should not be turned on and off frequently.
There should be a minimum elapsed time between two successive times when it is turned on [11]. The self-aware actuator knows this
constraint and, if it receives too many commands for turning on and turning off the relay (actuator), it disregards the received
commands and generates an error to inform the user. This property makes sure that neither the user nor the server needs to be aware
of actuator-specific constraints. Instead, the self-aware device has the knowledge of the constraints and has checks and balances built in.

E. Working Status of Sensor/Actuator

It is important to know if the connected sensors/actuators are actually working or not. For a sensor, we can detect its working
condition by its current value. If a sensor stops sending values or sends values that are out of range, we can conclude that that sensor is
not working properly assuming that the communication channel is not faulty. This type of property only works on sensors which give
analog values (e.g. temperature sensor or pressure sensor which gives output over a range). It is not possible to detect working status
for some of the digital sensors (for example touch sensor which gives either 1 or 0 as its output). We cannot decide whether the sensor
is stuck at a single value or it is providing normal input. We can define such analog and digital sensors in the device property part of
the unique id of the sensor and notify the user whether the user can get the working status of the sensor or not.

Checking the health of an actuator is harder than that of a sensor. Many actuators may not provide any feedback to the processing
element. However, this can be rectified by using auxiliary parts. For example, we can connect an appropriate new sensor to the
actuator and retrieve values from the sensor. Using the output of the new sensor, we can check whether the actuator is working or
not. Failure of the feedback sensor can raise a false alert. Fig.3 explains the working of this feedback mechanism.

V. Software Customization

Our architecture provides user customization of software where the user can create tasks/rules and set the user defined parameters for
self-aware sensors/actuators. For example, the user can set how frequently the user wants to read the sensor values as a user-defined
parameter.

Rules are divided into two main components:

• Trigger Condition: When the trigger condition is true, the rule is executed by either IoT gateway device or the server. A
single rule can have multiple trigger conditions. When a rule has more than one trigger condition, the rule is executed when
all the trigger conditions are true or a specific combination of triggers occurs.

• Actions: This represents the actions to be taken when the conditions are true. Some examples of actions our architecture
supports are as follow.
1. Send Text Message/App Notifications.
2. Send Email
3. Make phone calls and play notification message
4. Turn on/off Actuator
5. Turn on/off Main Power

More actions are user customizable and can be added to the system.

A single rule can have more than one action. All the actions are executed when the rule is true. An example of full rule is: “If
(temperature > 82 && humidity > 40) then “turn on” the fan controller and send message & email” This rule will turn on fan
controller (a self-aware actuator) and send out the notifications when the value of temperature (a self-aware sensor) is more than 82
and the value of humidity (a self-aware sensor) is more than 40. While this is a simple if then else type of rule more complex rules are
also possible.

A. Execution of Rule

A rule can be executed either on the server or on the IoT device. For the standalone self-aware architecture, a rule must run on server
because the standalone self-aware devices may not be capable of running the rule engine. For the gateway-based architecture, a rule
can run either on the server or on the IoT gateway device. When all the self-aware sensors/actuators attached with the rule are
connected to the same IoT gateway device, the rule can be executed on the IoT gateway device. When the self-aware
sensors/actuators are connected to different devices, the rule is executed on the server. When a rule is executed on the server, slow
or intermittent internet connectivity can cause problems in execution of the rule. When a user creates a rule, the rule is stored in our
database in the form of different tables. Execution of the rule is done as follows:

If the server is executing the rule, it fetches the rule from the database and sends it to the rule engine. The rule engine is a service in

 International Conference on Cloud of Things and Wearable Technologies 17

Cite this article as: Trusit Shah, S Venkatesan, Harsha Reddy, Somasundaram Ardhanareeswaran and Vishwas

Lokesh. “User Customizable IoT Systems Using Self-Aware Sensors and Self-Aware Actuators”. International

Conference on Cloud of Things and Wearable Technologies 2018: 12-20. Print.

our architecture, which takes the rule as input, fetches sensor values related to the rule and outputs appropriate commands to the
actuator. If the IoT device is executing the rule, it fetches the rule from the server using REST calls and after that, it sends the rule to
the rule engine running on the IoT device. The architecture of Rule Engine is shown in Fig. 4.

The code executed by the IoT device or the server is generated automatically by our backend. The user doesn’t write any code.

IMPLEMENTATION

We have implemented a basic prototype for such a self-aware sensor/actuator architecture. This implementation consists of four basic
components: IoT gateway Device, self-aware sensor/actuator, server and user interface.

A. Server

We have used a server running CentOS Linux by Digital Ocean. We have used JAVA Spring MVC framework as our main web server.
REST calls are used to communicate with the server. All the self-aware sensor and actuator details are stored in the database at our
server, once they become active. Hibernate platform is used to communicate with the database from the web server.

B. IoT Device

We have used a Raspberry Pi as the IoT device. We have created four threads to perform the following tasks independently:

• Detect any new USB device connection or removal of a self-aware device.

• Communicate with connected self-aware sensors/actuators via USB. When there are more than one sensors/actuator, the
IoT device communicates with them one by one.

• Get push notification from the server via MQTT.

• Run the rule engine.

When any newly connected device is detected by the first thread, the thread checks for the type of new device connected to it and if
the new device is a self-aware device, it configures it and adds it to the list of connected devices.

According to the constraints of self-aware sensor/actuator, the second thread will communicate with the sensor and upload data
through the services provided by the server.

If the user wants to manually turn on/off the actuator, the user can send a request to the server via the user interface. The server sends
the same request to the appropriate IoT device using MQTT notification. The third thread running on IoT device receives this request

 International Conference on Cloud of Things and Wearable Technologies 18

Cite this article as: Trusit Shah, S Venkatesan, Harsha Reddy, Somasundaram Ardhanareeswaran and Vishwas

Lokesh. “User Customizable IoT Systems Using Self-Aware Sensors and Self-Aware Actuators”. International

Conference on Cloud of Things and Wearable Technologies 2018: 12-20. Print.

and sends the appropriate command to turn on/off the actuator.

If all the self-aware sensors and self-aware actuators related to a rule are attached to the same IoT device, the last thread of IoT device
code executes the rule and sends appropriate actions to the self-aware actuator.

C. Self-Aware Device

For proof of concept, an Arduino board has been used to build the self-aware sensor (or actuator). [A custom hardware will make the
device minimal and aesthetically appealing, but will be time-consuming to build]. Temperature sensor ds1820 is connected to it. The
sensor ds1820 works on 1 wire protocol. When the Arduino is connected to the Raspberry Pi it sends all details such as unique id,
sensors connected to it, the range of the sensor, sensor’s other constraints, etc. All these details are stored in nonvolatile memory of
Arduino. After getting all these values, the Raspberry Pi will periodically request values from Arduino using AT commands. The
Arduino will read the value from ds1820 via 1 wire protocol, and send the value to the pi. Before sending data to the pi, the Arduino
performs preliminary check on the data to ensure that the data being provided to the Raspberry Pi is valid.

D. User Interface

We have created a simple web interface. It consists of following web pages.

• Summary Page: It displays basic details of the user. It also displays all the IoT devices owned by the user. The user can
import a new IoT device and delete an existing IoT device from this page.

• Rule Page: User can create a new rule from this page. The user can select the IoT device to “program”, see what sensors and
actuators are connected to it, and then from a set of pull-down menus, select the desired behavior. This page is responsible
for taking all the data from the user to create the needed tables which will be used by our backend to automatically create
code to implement the rule.

• Data Display Page: All the sensor values are displayed on this page.

E. Actual Implementation

We have converted the following sensors and actuators into self-aware sensors and self-aware actuators.

Sensors:

• Temperature sensor

• Soil moisture sensor

• Water level sensor

• Ultrasonic sensor

• Barcode reader

Actuators:

• Sprinkler controller

• Fan controller

• Magnetic Lock controller

We have also deployed one system at a local organic farm named Profound Microforms and the system has been operating well for the
past 9 months. The system consists of two self-aware sensors measuring air and water temperature respectively. The user can
customize text message alert or email alert on this system. The farmer at Profound Microforms have customized alerts according to
their requirements. For example, during winter they set an alert for the air temperature value greater than 70 °F and during summer
they set an alert for the air temperature value greater than 85 °F.

PERFORMANCE ANALYSIS

We measured timing evaluation and power evaluation for the performance analysis on an actual proof of concept implementation. As
the self-aware architecture requires additional processing element, it delays the end to end communication and it also requires more
power. We performed our analysis on a Raspberry Pi as the IoT device and Arduino as a self-aware processing element. We used Java
as the programming language for Raspberry Pi and C for Arduino.

A. Timing Analysis

We checked timing analysis by performing end to end communication on following two architectures. Basic IoT architecture, where

 International Conference on Cloud of Things and Wearable Technologies 19

Cite this article as: Trusit Shah, S Venkatesan, Harsha Reddy, Somasundaram Ardhanareeswaran and Vishwas

Lokesh. “User Customizable IoT Systems Using Self-Aware Sensors and Self-Aware Actuators”. International

Conference on Cloud of Things and Wearable Technologies 2018: 12-20. Print.

the sensor is connected directly to IoT device and self-aware IoT architecture, where the sensor is connected to IoT gateway device
through the self-aware device. Self-aware architecture introduces an additional communication delay between IoT device and self-
aware device. This additional delay varies based on data rate used between the IoT device and the self-aware device. In our analysis, we
have connected the IoT device with the self-aware device using USB protocol. We performed timing analysis on temperature sensor
which contains a payload of 3 bytes from self-aware device to IoT device. We performed timing analysis for 100 cycles and took an
average for analysis. Fig. 5 shows the analysis.

B. Power Analysis

Power consumption is divided into 3 main parts. Power consumed by IoT device, power consumed by self-aware device and power
consume by sensor/actuator. Power consumed by self-aware devices is an additional power consumed in our architecture. The power
consumption of self-aware device depends on the clock frequency of the self-aware sensor/actuator, communication data rate between
the self-aware device and the IoT device, communication frequency (how often) between the self-aware device and IoT device and
power saver mode used in the self-aware device. We theoretically calculated the power consumption using the following assumptions:
the self-aware device has sleep mode and it wakes up periodically to sense the reading and sends it to the IoT device. Communication
happens over USB with 9600 baud rates. Clock Frequency and voltage used are 16MHz and 5V respectively. For our configuration,
current consumption during wake-up mode is 19.9 mA and sleep mode is 3.14 mA [13, 14]. Power consumptions for various duty
cycles are shown in Table 2. Power consumption is computed using the following equation:

CONCLUSION

We have designed and implemented a user configurable IoT architecture using which a user can add (or remove) one or more self-
aware sensor/actuator to (or from) the IoT system without knowing any hardware knowledge. The user can also define rules that will
govern the execution of the IoT system, without having to write any software. This architecture enables a novice user to build a highly
customized IoT system. We have built several proof of concept prototypes to validate the idea.

Security is an import requirement of IoT systems. Numerous approaches are possible for this task. Implementing a suitable security
protocol for our framework is an important next step. We are working on this and related issues.

REFERENCES

1. Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012, December). Future internet: the internet of things architecture,
possible applications and key challenges. In Frontiers of Information Technology (FIT), 2012 10th International Conference
on (pp. 257-260). IEEE.

2. Ishaq, Isam, et al. "IETF standardization in the field of the internet of things (IoT): a survey". Journal of Sensor and Actuator

 International Conference on Cloud of Things and Wearable Technologies 20

Cite this article as: Trusit Shah, S Venkatesan, Harsha Reddy, Somasundaram Ardhanareeswaran and Vishwas

Lokesh. “User Customizable IoT Systems Using Self-Aware Sensors and Self-Aware Actuators”. International

Conference on Cloud of Things and Wearable Technologies 2018: 12-20. Print.

Networks 2.2 (2013): 235-287.
3. Bandyopadhyay, Debasis, and Jaydip Sen. "Internet of things: Applications and challenges in technology and

standardization". Wireless Personal Communications 58.1 (2011): 49-69.
4. Tao, F., Cheng, Y., Da Xu, L., Zhang, L., & Li, B. H. (2014). CCIoT-CMfg: cloud computing and internet of things-based

cloud manufacturing service system. IEEE Transactions on Industrial Informatics, 10(2), 1435-1442.
5. Alam, Sarfraz, Mohammad MR Chowdhury, and Josef Noll. "Senaas: An event-driven sensor virtualization approach for

internet of things cloud". Networked Embedded Systems for Enterprise Applications (NESEA), 2010 IEEE International
Conference on. IEEE, 2010.

6. Tan, Lu, and Neng Wang. "Future internet: The internet of things". 2010 3rd International Conference on Advanced
Computer Theory and Engineering (ICACTE). Vol. 5. IEEE, 2010.

7. Datta, Soumya Kanti, Christian Bonnet, and Navid Nikaein. "An IoT gateway centric architecture to provide novel M2M
services". Internet of Things (WF-IoT), 2014 IEEE World Forum on. IEEE, 2014.

8. Ren, J., Guo, H., Xu, C., & Zhang, Y. (2017). Serving at the Edge: A Scalable IoT Architecture Based on Transparent
Computing. IEEE Network, 31(5), 96-105.

9. Hada, Hisakazu, and Jin Mitsugi. "EPC based internet of things architecture". RFID-Technologies and Applications (RFID-
TA), 2011 IEEE International Conference on. IEEE, 2011.

10. https://datasheets.maximintegrated.com/en/ds/DS18S20.pdf
11. http://www.ni.com/white-paper/2774/en/
12. Yashiro, T., Kobayashi, S., Koshizuka, N., & Sakamura, K. (2013, August). An Internet of Things (IoT) architecture for

embedded appliances. In Humanitarian Technology Conference (R10-HTC), 2013 IEEE Region 10 (pp. 314-319). IEEE.
13. http://www.home-automation-community.com/arduino-low-power-how-to-run-atmega328p-for-a-year-on-coin- cell-

battery/.
14. http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-

328-328P_datasheet_Complete.pdf
15. https://m2x.att.com/
16. https://aws.amazon.com/iot/
17. Kortuem, G., Kawsar, F., Sundramoorthy, V., & Fitton, D.(2010). Smart objects as building blocks for the internet of

things. IEEE Internet Computing, 14(1), 44-51.
18. Ghosh, Debashish, Fan Jin, and Muthucumaru Maheswaran. "JADE: A unified programming framework for things, web, and

cloud". Internet of Things (IOT), 2014 International Conference on the. IEEE, 2014.
19. Stirbu, Vlad. "Towards a restful plug and play experience in the web of things". Semantic computing, 2008 IEEE

international conference on. IEEE, 2008.
20. Zeng, D., Guo, S., Cheng, Z., & Pham, A. T. (2011, September). IF-THEN in the internet of things. In 2011 3rd

international conference on awareness science and technology (iCAST) (pp.503-507). IEEE.
21. Sarkar, C., Nambi, S. A. U., Prasad, R. V., & Rahim, A. (2014, March). A scalable distributed architecture towards

unifying IoT applications. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 508-513). IEEE.
22. Alam, S., Chowdhury, M. M., & Noll, J. (2010, November). Senaas: An event-driven sensor virtualization approach for

internet of things cloud. In Networked Embedded Systems for Enterprise Applications (NESEA), 2010 IEEE International
Conference on (pp. 1-6). IEEE.

23. Kiran, M. S., Rajalakshmi, P., Bharadwaj, K., & Acharyya, A. (2014, March). Adaptive rule engine based IoT enabled
remote health care data acquisition and smart transmission system. In Internet of Things (WF-IoT), 2014 IEEE World
Forum on (pp. 253-258). IEEE.

