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Abstract: 

          In this article, The main concept of this paper is to discuss the micro topology as an 

unadorned extension of nano topology. Nano topology offers a wide variety of interesting results 

and applications. But for some time we have been looking for extended sets in micro topological 

space. A.Jayalakshmi and C.Janaki have discussed the properties of MIC-Wgrα-Closed and 

MIC-Wgrα-Open Maps in topological spaces. Also  have discussed  Wgrα-closures and obtain a 

characterization of  Wgrα-Continuous functions in  topological spaces. we present and study the 

properties of MIC-Wgr𝛼-I-Closed Sets in Micro ideal topological spaces. Their relationships 

with other existing Micro generalized closed sets in micro Topological and Micro ideal 

topological spaces are established.  

Keywords: 

    MIC-Wgr𝛼-I-Closed Sets, MIC-Wgr𝛼-I-Open Sets, MIC- 𝜔-closed set, MIC- 𝛼-I-closed set, 

MIC- 𝛼-I-closed set, MIC-*closed set, MIC- 𝛼-closed set. 

Introduction: 

       Taha.H.Jasim, Saja S.Mohan, Kanajo S.Eke [3] initiated On Micro generalized closed sets 

and Micro generalized continuity in Micro Topological Spaces in 2021.R.Bhavani [4] proposed 

On Strong Forms of Generalized Closed Sets in Micro Topological Spaces in 2021.S.Ganesan 

[1] has proposed a new concept of Micro topological space through small systems, M.Josephine 

Rani and R.Bhavani [2] introduced MIC-𝛼Ig and MIC-Ig𝛼 Closed Sets in Micro Ideal 

Topological Spaces in 2022. In 2014 C.Janaki, A.Jayalakshmi [5] proposed Wgr𝛼-I-Closed Sets 

in ideal topological spaces. The methodology proposed in this paper MIC-Wgr𝛼-I-Closed Sets, 
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MIC-Wgr𝛼-I-Open Sets in Micro ideal topological spaces and Some of their features will also be 

investigated. 

Preliminaries: 

Definition 2.1[2,3] 

    Start U as a set of horizontal instruments called the Universe and R as the equivalent  

    relationship with U, which is called the relation of ignorance.  

    This couple (U,R) is said to be the space of enterprise. Enable X⊆U. 

i) The minimum X relative to R is the set of all the details, which is set for the object  

 divided by X relative to R and denoted by LR(X).That is, 

                𝐿𝑅(𝑋) = {𝑅(𝑥): 𝑅(𝑥) ⊆ 𝑋} 𝑥∈𝑈
𝑈 where R(x) represents the equivalent class 

               determined by X. 

   ii)        The maximum X value relative to R is UR(X) = {𝑅(𝑥): 𝑅(𝑥) ∩ 𝑋 ≠ 𝜙}𝑥∈𝑈
𝑈 .      

iii) The boundary area of X with respect to R is a set of all objects which is  

intermediate or   non-X with respect to R and is defined as BR(X).That is,  

BR(X) = UR(X)- LR(X) and their complement is called micro closed sets. 

Definition 2.2[2,3] 

 (U, τR(X)) is a Nano topological space then 𝜇𝑅(X) = {𝑁𝖴 (𝑁 ′ ∩ 𝜇) :𝑁, 𝑁 ′ ∈ τR(X)}  

and called it Micro topology of  τR(X) by 𝜇 where 𝜇 ∉ τR(X). 

Definition 2.3[2,3] 

Micro topology  𝜇𝑅 (X) satisfies the following theories 

 (i)U, ϕ ∈ 𝜇𝑅(X) 

 (ii) A combination of any of the elements the group is 𝜇𝑅(X) in 𝜇𝑅(X)  

(iii) The intersection of parcels of any finite subdivision of 𝜇𝑅(X) in 𝜇𝑅(X). Also 𝜇𝑅(X) is  

called the micro topology in relation to X in U. Triplets (U, τR(X), 𝜇𝑅(X)) are called micro 

topological spaces and the bases of 𝜇𝑅(X) are called micro open sets and their complements 

are called micro closed sets. 

Definition 2.4 

A subset S of a space (X,𝜏) is called  

1. regular open if S=int(cl(S)) 

2. regular 𝛼-open if there is a regular open set U⊂S⊂  𝛼cl(U). 

3. 𝛼-open if S⊆int(cl(int(S))) 
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4.Semi-open if S⊆cl(int(S))  

Definition 2.5 

      A subset S of a space (X,𝜏) is said to be  

1.g-closed, if cl(S) ⊆ 𝑈,whenever S⊆ 𝑈 and S is open in(X,𝜏). 

2.wgr𝛼-closed,if cl(int(S)) ⊆ 𝑈, whenever S⊆ 𝑈 and U is regular  𝛼-open in (X,𝜏). 

3.𝜔-cosed,if cl(S) ⊆ 𝑈, 𝑈,whenever S⊆ 𝑈 and U is regular semi-open in (X,𝜏). 

4.rg 𝛼-closed, if 𝛼𝑐𝑙(S) ⊆ 𝑈,whenever S⊆ 𝑈 and U is regular  𝛼-open in (X,𝜏). 

5.swg-closed,if cl(int(S)) ⊆U, whenever S⊆ 𝑈 and U is regular semi-open in (X,𝜏). 

Definition 2.5 

      A subset S of a space (X,𝜏, 𝐼) is said to be 

1. 𝛼-I-closed,if cl(int*(cl(S))) ⊆S 

2. ∗-closed,if S* ⊆S 

3. I-open,if S ⊆int(S*) 

4. I-R closed,if S=cl*(int(S)) 

5. rps-I-closed,if splcl(S) ⊆U, whenever S⊆ 𝑈 and U is regular rg-I-open in (X,𝜏). 

3. MIC-wgr𝜶-I-closed sets 

Definition 3.1 

      A subset S of a Micro ideal space (Ω, NA(𝜏𝑅(𝑋)̆), MICR(𝜇𝑅(𝑋)̆ ), ID) is said to be MIC-

wgr𝛼-I-closed if MIC-cl*(MIC-int(S)) ⊆ U whenever S⊆ 𝑈 and U is MIC-regular 𝛼-open. 

Definition 3.2 

      A subset S of a Micro ideal space (Ω, NA(𝜏𝑅(𝑋)̆), MICR(𝜇𝑅(𝑋)̆ ), ID) is said to be MIC-

wgr𝛼-I-open if Ω-S is MIC-wgr𝛼-I-closed. 

Theorem 3.3 

1.Every MIC-closed set is MIC-wgr𝛼-I-closed.  

2.Every MIC- 𝛼-closed set is MIC-wgr𝛼-I-closed.  

3. Every MIC-*closed set is MIC-wgr𝛼-I-closed.  

4.Every MIC- 𝜔-closed set is MIC-wgr𝛼-I-closed.  

5. Every MIC- 𝛼-I-closed set is MIC-wgr𝛼-I-closed. 

6. Every MIC-swg-closed set is MIC-wgr𝛼-I-closed.   

Remark 3.4 
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       Converse of the above theorem need not be true as shown in the following examples 3.5 

and 3.6. 

Example 3.5 

   Let Ω={1,2,3,4} with  
Ω

𝑅
(X)={{1},{2},{3,4}, X={1,3}⊂ Ω, 𝜏𝑅(𝑋)̃ ={ 𝜑, Ω ,{1},{1,3,4},{3,4}} 

and  µ={2} and ideal  I={∅,{3}}, Micro topology  𝜇𝑅(𝑋)̆  ={𝜑, Ω ,{1},{2},{1,2},{1,3,4},{3,4}, 

{2,3,4}}, 𝜇𝑅′(𝑋)̆  ={𝜑, Ω ,{2,3,4},{1,3,4},{3,4},{2},{1,2},{1}} MIC-wgr𝛼-I-closed={{𝜑, Ω ,  

{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,3,4}{1,2,4}{2,3,4}} 

i){3} is MIC-wgr𝛼-I-closed,but not MIC-closed 

ii){2,4} is MIC-wgr𝛼-I-closed but not MIC- 𝛼-closed set 

iii){1,3} is MIC-wgr𝛼-I-closed but not MIC-*closed set 

Example 3.6 

    Let Ω={n,o,p,q} with  
Ω

𝑅
(X)={{n,q},{o},{p}, X={o,p}⊂ Ω, 𝜏𝑅(𝑋)̃ ={ 𝜑, Ω ,{o,p}} and  µ={q} 

and ideal I={∅,{o},{p,q}},Micro topology  𝜇𝑅(𝑋)̆  ={𝜑, Ω ,{q},{o,p},{o,p,q}}, 𝜇𝑅′(𝑋)̆  ={𝜑, Ω , 

{n,o,p},{n,q},{n}}  MIC-wgr𝛼-I-closed={power set} 

iv){o} is MIC-wgr𝛼-I-closed but not MIC- 𝜔-closed 

v){o,p}is MIC-wgr𝛼-I-closed but not MIC- 𝛼-I-closed 

vi){q} is MIC-wgr𝛼-I-closed but not MIC-swg-closed set 

Remark 3.7 

       Every MIC-semi-closed is MIC-wgr𝛼-I-closed 

Example 3.8 

     Let Ω ={p,q,r,s} with  
Ω

𝑅
(X)={{p,s},{q},{r}, X={q,r}⊂ Ω, 𝜏𝑅(𝑋)̃ ={ 𝜑, Ω ,{q,r}} and  µ={s} 

and ideal I={∅,{q},{r,s}},Micro topology  𝜇𝑅(𝑋)̆  ={𝜑, Ω ,{o},{q,r},{q,r,s}}, 𝜇𝑅′(𝑋)̆  ={𝜑, Ω , 

{p,q,r},{p,s},{p}},MIC-wgr𝛼-I-closed={power set}.Let S={p,q} is MIC-wgr𝛼-I-closed but 

not MIC-semi-closed. 

 

Remark 3.9 

     Every MIC-g-closed set is MIC-wgr𝛼-I-closed 

Example 3.10 
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      Let Ω={n,o,p,q} with  
Ω

𝑅
(X)={{n,q},{o},{p}, X={o,p}⊂ Ω, 𝜏𝑅(𝑋)̃ ={ 𝜑, Ω ,{o,p}} and  

µ={q} and ideal I={∅,{o},{p,q}},Micro topology  𝜇𝑅(𝑋)̆  ={𝜑, Ω ,{q},{o,p},{o,p,q}}, 𝜇𝑅′(𝑋)̆  ={  

𝜑, Ω , {n,o,p},{n,q},{n}},MIC-wgr𝛼-I-closed={power set}.Let S={p} is MIC-wgr𝛼-I-closed 

but not MIC-g-closed. 

Remark 3.11      

      In the theorems above, we find the ensuing diagram. A → B (resp. A ↮ B) A  implies  B 

but not conversely (resp A and B are independent of each other). 

 

 

 

 

 

Theorem 3.12 

     Let  (Ω, NA(𝜏𝑅(𝑋)̆), MICR(𝜇𝑅(𝑋)̆ ), ID) a Micro ideal space S⊆ Ω.If S is MIC-wgr𝛼-I- 

closed, then MIC-cl*(MIC-int(S))-S contains no non-empty MIC-regular𝛼-open set. 

Proof  

     Let S be a MIC-wgr𝛼-I-closed set in Ω and U be a MIC-regular-𝛼-open subset of MIC-

cl*(MIC-int(S))-S.Then S ⊆ Ω-U  and  Ω-U is MIC-regular-𝛼-open. Since S is MIC-wgr𝛼-I-

closed MIC-cl*(MIC-int(S)) ⊆ Ω-U. Which implies that U ⊆ Ω- MIC-cl*(MIC-int(S)).Thus 

U ⊆(MIC-cl*(MIC-int(S))∩ (Ω-MIC-cl*(MIC-int(S)))=∅.Hence MIC-cl*(MIC-int(S))-S 

contains no non-empty MIC-regular-𝛼-open set. 

Theorem 3.13 

     Let  (Ω, NA(𝜏𝑅(𝑋)̆), MICR(𝜇𝑅(𝑋)̆ ), ID) a Micro ideal space S⊆ Ω.If S is MIC-wgr𝛼-I- 
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closed, then MIC-cl*(MIC-int(S))-S contains no non-empty MIC-regular𝛼-closed set. 

Proof  

   Let S be a MIC-wgr𝛼-I-closed set in Ω and U be a MIC-regular-𝛼-closed subset of MIC-

cl*(MIC-int(S))-S.Then Ω-U ⊆ S  and  Ω-U is MIC-regular-𝛼-closed. Since S is MIC-wgr𝛼-

I-closed Ω-U ⊆ MIC-cl*(MIC-int(S)). Which implies that Ω- MIC-cl*(MIC-int(S)) ⊆ U.Thus 

(MIC-cl*(MIC-int(S))∩ (Ω-MIC-cl*(MIC-int(S))) ⊆ U =∅.Hence MIC-cl*(MIC-int(S))-S 

contains no non-empty MIC-regular-𝛼-closed set. 

Theorem 3.14 

     Let  (Ω, NA(𝜏𝑅(𝑋)̆), MICR(𝜇𝑅(𝑋)̆ ), ID) a Micro ideal space S⊆ Ω.If S is MIC-wgr𝛼-I- 

closed, then MIC-cl*(MIC-int(S))-S contains no non-empty MIC-regular-open set. 

Proof  

     Let S be a MIC-wgr𝛼-I-closed set in Ω and U be a MIC-regular-open subset of MIC-

cl*(MIC-int(S))-S.Then S ⊆ Ω-U and Ω-U is MIC-regular-open. Since S is MIC-wgr𝛼-I-

closed MIC-cl*(MIC-int(S)) ⊆ Ω-U. Which implies that U ⊆ Ω- MIC-cl*(MIC-int(S)).Thus 

U ⊆(MIC-cl*(MIC-int(S))∩ (Ω-MIC-cl*(MIC-int(S)))=∅.Hence MIC-cl*(MIC-int(S))-S 

Contains no non-empty MIC-regular-open set. 

Theorem 3.15 

     Let  (Ω, NA(𝜏𝑅(𝑋)̆), MICR(𝜇𝑅(𝑋)̆ ), ID) a Micro ideal space S⊆ Ω.If S is MIC-wgr𝛼-I- 

closed, then MIC-(int(S))*-S contains no non-empty MIC-regular𝛼-open set. 

Proof 

     Let S be a MIC-wgr𝛼-I-closed set in Ω.Suppose that U is a MIC-regular-𝛼-open set 

Such that MIC-cl*(MIC-int(S)) ⊆ Ω-U. Which implies that MIC-(int(S))* ⊆ Ω-U,thus, 

MIC-(int(S))*-S contains no non-empty MIC-regular- 𝛼 -open set. 

Theorem 3.16 

 Let S be a MIC-wgr𝛼-I-closed set of a Micro ideal topological space Ω.Then the following 

are equivalent. 

  i)S is MIC-I-R-closed  

  ii)MIC-cl*(MIC-int(S))-S is a MIC-regular-𝛼-closed set 

  iii)MIC-(int(S))*-S is a MIC-regular-𝛼-closed set 

Proof 
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 (i)⇒(ii)Let S be MIC-I-R-closed.We have MIC-cl*(MIC-int(S))=S, then MIC-cl*(MIC-

int(S))-S=∅ .Thus, MIC-cl*(MIC-int(S))-S is a MIC-regular-𝛼-closed set. 

(ii) ⇒(iii) Let MIC-cl*(MIC-int(S))-S be MIC-regular-𝛼-closed. MIC-cl*(MIC-int(S))-S= 

MIC-(int(S))*-S. Therefore MIC-(int(S))*-S is a MIC-regular-𝛼-closed set. 

(iii) ⇒(i) Let MIC-(int(S))*-S be a MIC-regular-𝛼-closed set, MIC-cl*(MIC-int(S))-S = 

MIC-(int(S))*-S =∅ .Thus MIC-cl*(MIC-int(S))=S. Hence S is MIC-I-R-closed. 

Theorem 3.17 

       Let (Ω, NA(𝜏𝑅(𝑋)̆), MICR(𝜇𝑅(𝑋)̆ ), ID) a Micro ideal space S⊆ Ω.If S is MIC-regular-

open and MIC-wgr𝛼-I-closed, then S is MIC-*closed set. 

Proof 

      Let S⊆ S and S be MIC-regular-open. Since S is MIC-wgr𝛼-I-closed in Ω, MIC-

cl*(MIC-int(S))⊆ S,which implies that,MIC-cl*(S)= MIC-cl*(MIC-int(S)) ⊆ S. Therefore S 

is MIC-*closed in Ω. 

Theorem 3.18 

      Let (Ω, NA(𝜏𝑅(𝑋)̆), MICR(𝜇𝑅(𝑋)̆ ), ID) a Micro ideal space. Then either{ Ω} is MIC-

regular-closed (or) Ω-{ Ω}is MIC-wgr𝛼-I-closed for every Ω ∈ Ω. 

Proof  

     Suppose { Ω} is not MIC-regular-open and the only MIC-regular-open set containing 

Ω-{ Ω} is Ω and MIC-cl*(MIC-int(Ω-{ Ω}))⊆ Ω.Hence Ω-{ Ω} is MIC-wgr𝛼-I-closed set in Ω. 

Theorem 3.19 

 Let (Ω, NA(𝜏𝑅(𝑋)̆), MICR(𝜇𝑅(𝑋)̆ ), ID) a Micro ideal space, S is MIC-regular-open and S⊆

Ω. 

Then the following properties are equivalent. 

 (i)S is MIC-*closed 

 (ii)S is MIC-I-R-closed 

 (iii)S is MIC-wgr𝛼-I-closed 

Proof 

(i)⇒(ii)Let S be MIC-*closed and MIC-regular-open, MIC-cl*(MIC-int(S))=MIC- cl*(S)=S. 

Thus,S is MIC-I-R-closed. 
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(ii)⇒(iii)Let S ⊆ S and S be MIC-regular-open. Since S is MIC-I-R-closed and every  MIC-

regular-open set is MIC-regular-𝛼-open, MIC-cl*(MIC-int(S))⊆ S.Thus S is MIC-wgr𝛼-I-

closed. 

(iii)⇒(i) Let S⊆ S and S be MIC-regular-open. Since S is MIC-wgr𝛼-I-closed in Ω, MIC-

cl*(MIC-int(S))⊆ S,which implies that,MIC-cl*(S)= MIC-cl*(MIC-int(S)) ⊆ S. Therefore S 

is MIC-*closed in Ω. 

Theorem 3.20 

     Let 𝑆1 be a MIC-wgr𝛼-I-closed set in a Micro ideal space Ω such that  𝑆1 ⊆ 𝑆2 ⊆ MIC-

cl*(MIC-int(𝑆1)),then 𝑆2 is also a MIC-wgr𝛼-I-closed set. 

Proof 

  Let U be a MIC-regular α-open set of Ω , such that 𝑆2⊆ U. Then 𝑆1⊆ 𝑆2 ⊆ U. Since 𝑆1 is MIC-

wgrα-I-closed,cl*(int(𝑆1)) ⊆ U.Now cl*(int(𝑆2))⊆cl*(int(cl*(int(𝑆1))))=cl*(int(𝑆1))⊆U.Therefore 

𝑆2 is MIC-wgrα-I-closed. 

Theorem 3.21 

    Let S be a MIC-wgrα-I-closed set in an ideal space X. Then S ∪(Ω–cl*(int(S))) is MIC-wgrα-

I-closed if and only if (MIC-int(S))* –S is MIC-wgrα-I-open. 

Proof 

    Let (MIC-int(S))*−S be MIC-wgrα-I-open in Ω ⇔ Ω–((MIC-int(S))*–S) is MIC-wgrα-I-

closed. Ω–((MIC-int(S))*–S) ⇔ Ω ∩ (𝑀𝐼𝐶 − 𝑖𝑛𝑡 (𝑆∗ ∩ 𝑆𝐶)𝐶⇔ S∪(Ω–MIC-cl*(MIC-int(S))). 

Hence the proof. 

Conclusion 

    This paper was presented with MIC-Wgr𝛼-I-Closed Sets, MIC-Wgr𝛼-I-Open Sets, MIC-I-R-

closed and MIC-swg-closed set in  Micro ideal topological spaces and investigated some of the 

key frameworks in the Micro ideal topological spaces. A variety of interesting problems 

identified in the analysis. 
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